151 resultados para Differential Localization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alpha hGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alpha hGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved
Resumo:
Pimelodidae is one of the most representative of Neotropical catfish families. However, these fish are still poorly studied in terms of cytogenetics, especially regarding the application of more accurate techniques such as the chromosomal localization of ribosomal genes. In the present work, fluorescent in situ hybridization with 5S and 18S rDNA probes was employed for rDNA site mapping in Pimelodus sp., P. fur and P. maculatus from the São Francisco River in the Três Marias municipality - MG. The results from the application of the 18S probe confirmed the previous data obtained by silver nitrate staining, identifying a simple nucleolar organizing region system for these species. However, the labeling results from the 5S rDNA probe demonstrated a difference in the number and localization of these sites between the analyzed species. The obtained data allowed inferences on the possible processes involved in the karyotypic evolution of this genus.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
Background. The radioguided localization of occult breast lesions (ROLL) technique often utilizes iodinated radiographic contrast to assure that the local injection of (99m)Tc-MAA corresponds to the location of the lesion under investigation. However, for this application, this contrast has several shortcomings. The objective of this study was to evaluate the safety, effectiveness and technical feasibility of the use of polydimethylsiloxane (PDMS) as radiological contrast and tissue marker in ROLL. Materials and methods. The safety assessment was performed by the acute toxicity study in Wistar rats (n = 50). The radiological analysis of breast tissue (n = 32) from patients undergoing reductive mammoplasty was used to verify the effectiveness of PDMS as contrast media. The technical feasibility was evaluated through the scintigraphic and histologic analysis. Results. We found no toxic effects of PDMS for this use during the observational period. It has been demonstrated in human breast tissue that the average diameter of the tissue marked by PDMS was lower than when marked by the contrast medium (p <0.001). PDMS did not interfere with the scintigraphic uptake (p = 0.528) and there was no injury in histological processing of samples. Conclusions. This study demonstrated not only the superiority of PDMS as radiological contrast in relation to the iodinated contrast, but also the technical feasibility for the same applicability in the ROLL.
Resumo:
In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
In this paper we discuss the existence of solutions for a class of abstract partial neutral functional differential equations.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
AIM: To compare the histologic features of the liver in intrahepatic neonatal cholestasis (IHNC) with infectious, genetic-endocrine-metabolic, and idiopathic etiologies. METHODS: Liver biopsies from 86 infants with IHNC were evaluated. The inclusion criteria consisted of jaundice beginning at 3 mo of age and a hepatic biopsy during the 1st year of life. The following histologic features were evaluated: cholestasis, eosinophilia, giant cells, erythropoiesis, siderosis, portal fibrosis, and the presence of a septum. RESULTS: Based on the diagnosis, patients were classified into three groups: group 1 (infectious; n = 18), group 2 (genetic-endocrine-metabolic; n = 18), and group 3 (idiopathic; n = 50). There were no significant differences with respect to the following variables: cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and presence of a septum. A significant difference was observed with respect to erythropoiesis, which was more severe in group 1 (Fisher's exact test, P = 0.016). CONCLUSION: A significant difference was observed in IHNC of infectious etiology, in which erythropoiesis was more severe than that in genetic-endocrine-metabolic and idiopathic etiologies, whereas there were no significant differences among cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and the presence of a septum. (C) 2009 The WIG Press and Baishideng. All rights reserved.
Resumo:
Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.
Resumo:
The mating sign that each drone leaves when mating with a queen essentially consists of mucus gland proteins. We employed a Representational Difference Analysis (RDA) methodology to identify genes that are differentially expressed in mucus glands during sexual maturation of drones. The RDA library for mucus glands of newly emerged drones was more complex than that of 8 day-old drones, with matches to 20 predicted genes. Another 26 reads matched to the Apis genome but not to any predicted gene. Since these ESTs were located within ORFs they may represent novel honey bee genes, possibly fast evolving mucus gland proteins. In the RDA library for mucus glands of 8 day-old drones, most reads corresponded to a capsid protein of deformed wing virus, indicating high viral loads in these glands. The expression of two genes encoding venom allergens, acid phosphatase-1 and hyaluronidase, in drone mucus glands argues for their homology with the female venom glands, both associated with the reproductive system.