2 resultados para Designer mediator

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory diseases associated with pain are often difficult to treat in the clinic due to insufficient understanding of the nociceptive pathways involved. Recently, there has been considerable interest in the role of reactive oxygen species (ROS) in inflammatory disease, but little is known of the role of hydrogen peroxide (H(2)O(2)) in hyperalgesia. In the present study, intraplantar injection of H(2)O(2)-induced a significant dose- and time-dependent mechanical and thermal hyperalgesia in the mouse hind paw, with increased c-fos activity observed in the dorsal horn of the spinal cord. H(2)O(2) also induced significant nociceptive behavior Such as increased paw licking and decreased body liftings. H(2)O(2) levels were significantly raised in the carrageenan-induced hind paw inflammation model, showing that this ROS is produced endogenously in a model of inflammation. Moreover, superoxide dismutase and catalase significantly reduced carrageenan-induced mechanical and thermal hyperalgesia, providing evidence of a functionally significant endogenous role. Thermal, but not mechanical, hyperalgesia in response to H(2)O(2) (i.pl.) Was longer lasting in TRPV1 wild type mice compared to TRPV1 knockouts. It is unlikely that downstream lipid peroxidation was increased by H(2)O(2). In conclusion, we demonstrate a notable effect of H(2)O(2) in mediating inflammatory hyperalgesia, thus highlighting H(2)O(2) removal as a novel therapeutic target for anti-hyperalgesic drugs in the clinic. (C) 2008 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.