2 resultados para Data stream mining

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions. Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in Sao Paulo City. Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by ambient temperature variation. In order to obtain better contrast between background and metallic targets it was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation between conductivity/susceptibility and temperature intending comparative studies. The correction of temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as well deeper targets were also improved. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.