3 resultados para Danilov, Vadim
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort (R)) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the surface of the tongue was created by a dynamic pattern of electrical pulses and the patient was able to adjust the intensity of stimulation and spatially centralize the stimulus on the electrode array. Patients were directed to continuously adjust head orientation and to maintain the stimulus pattern at the center of the array. Postural tasks that present progressive difficulties were given during the use of the device. Pre- and post-treatment distribution of the sensory organization test (SOT) composite score showed an average value of 38.3 +/- 8.7 and 59.9 +/- 11.3, respectively, indicating a statistically significant improvement (p = 0.01). Electrotactile tongue biofeedback significantly improved the postural control of the study group, even if they had not improved with conventional VR. The electrotactile tongue biofeedback system was able to supply additional information about head position with respect to gravitational vertical orientation in the absence of vestibular input, improving postural control. Patients with BVL can integrate electrotactile information in their postural control in order to improve stability after conventional VR. These results were obtained and verified not only by the subjective questionnaire but also by the SOT composite score. The limitations of the study are the small sample size and short duration of the follow-up. The current findings show that the sensory substitution mediated by electrotactile tongue biofeedback may contribute to the improved balance experienced by these patients compared to VR. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Among lampyrids, intraspecific sexual communication is facilitated by spectral correspondence between visual sensitivity and bioluminescence emission from the single lantern in the tail. Could a similar strategy be utilized by the elaterids (click beetles), which have one ventral abdominal and two dorsal prothoracic lanterns? Spectral sensitivity [S(lambda)] and bioluminescence were investigated in four Brazilian click beetle species Fulgeochlizus bruchii, Pyrearinus termitilluminans, Pyrophorus punctatissimus and P. divergens, representing three genera. In addition, in situ microspectrophotometric absorption spectra were obtained for visual and screening pigments in P. punctatissimus and P. divergens species. In all species, the electroretinographic S(lambda) functions showed broad peaks in the green with a shoulder in the near-ultraviolet, suggesting the presence of short- and long-wavelength receptors in the compound eyes. The long-wavelength receptor in Pyrophorus species is mediated by a P540 rhodopsin in conjunction with a species-specific screening pigment. A correspondence was found between green to yellow bioluminescence emissions and its broad S(lambda) maximum in each of the four species. It is hypothesized that in elaterids, bioluminescence of the abdominal lantern is an optical signal for intraspecifc sexual communication, while the signals from the prothoracic lanterns serve to warn predators and may also provide illumination in flight.