6 resultados para DYSKERATOSIS-CONGENITA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A case of dyskeratosis congenita (DC) of an 11-year-old male is reported. He presented with the characteristic clinical triad of reticular pigmentation of the skin, dystrophic nails and oral lesions, and up to the present he had not developed hematological compromise. Oral lesions consisted of extensive tongue erosions and keratosis, and exuberant gingivitis associated. Appropriate periodontal treatment was performed with discrete improvement only. We emphasize that severe gingival inflammation, although infrequent, may represent an alteration specific to DC and therefore should be considered as an additional sign of this syndrome.
Resumo:
Loss-of-function mutations in telomerase complex genes can cause bone marrow failure, dyskeratosis congenita, and acquired aplastic anemia, both diseases that predispose to acute myeloid leukemia. Loss of telomerase function produces short telomeres, potentially resulting in chromosome recombination, end-to-end fusion, and recognition as damaged DNA. We investigated whether mutations in telomerase genes also occur in acute myeloid leukemia. We screened bone marrow samples from 133 consecutive patients with acute myeloid leukemia and 198 controls for variations in TERT and TERC genes. An additional 89 patients from a second cohort, selected based on cytogenetic status, and 528 controls were further examined for mutations. A third cohort of 372 patients and 384 controls were specifically tested for one TERT gene variant. In the first cohort, 11 patients carried missense TERT gene variants that were not present in controls (P<0.0001); in the second cohort, TERT mutations were associated with trisomy 8 and inversion 16. Mutation germ-line origin was demonstrated in 5 patients from whom other tissues were available. Analysis of all 3 cohorts (n = 594) for the most common gene variant (A1062T) indicated a prevalence 3 times higher in patients than in controls (n = 1,110; P = 0.0009). Introduction of TERT mutants into telomerase-deficient cells resulted in loss of enzymatic activity by haploinsufficiency. Inherited mutations in TERT that reduce telomerase activity are risk factors for acute myeloid leukemia. We propose that short and dysfunctional telomeres limit normal stem cell proliferation and predispose for leukemia by selection of stem cells with defective DNA damage responses that are prone to genome instability.
Resumo:
Some patients with liver disease progress to cirrhosis, but the risk factors for cirrhosis development are unknown. Dyskeratosis congenita, an inherited bone marrow failure syndrome associated with mucocutaneous anomalies, pulmonary fibrosis, and cirrhosis, is caused by germline mutations of genes in the telomerase complex. We examined whether telomerase mutations also occurred in sporadic cirrhosis. In all, 134 patients with cirrhosis of common etiologies treated at the Liver Research Institute, University of Arizona, between May 2008 and July 2009, and 528 healthy subjects were screened for variation in the TERT and TERC genes by direct sequencing; an additional 1,472 controls were examined for the most common genetic variation observed in patients. Telomere length of leukocytes was measured by quantitative polymerase chain reaction. Functional effects of genetic changes were assessed by transfection of mutation-containing vectors into telomerase-deficient cell lines, and telomerase activity was measured in cell lysates. Nine of the 134 patients with cirrhosis (7%) carried a missense variant in TERT, resulting in a cumulative carrier frequency significantly higher than in controls (P = 0.0009). One patient was homozygous and eight were heterozygous. The allele frequency for the most common missense TERT variant was significantly higher in patients with cirrhosis (2.6%) than in 2,000 controls (0.7%; P = 0.0011). One additional patient carried a TERC mutation. The mean telomere length of leukocytes in patients with cirrhosis, including six mutant cases, was shorter than in age-matched controls (P = 0.0004). Conclusion: Most TERT gene variants reduced telomerase enzymatic activity in vitro. Loss-of-function telomerase gene variants associated with short telomeres are risk factors for sporadic cirrhosis. (HEPATOLOGY 2011;53:1600-1607)
Resumo:
The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The us e of hDPSC in NIS rats did not cause any graft. rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery.
Resumo:
Mobius sequence is a congenital facial and abducens nerve palsy, frequently associated to abnormalities of extremities. Arthrogryposis multiplex congenital is defined as a congenital fixation of multiple joints seldom of neurogenic origin. Both sequences must have a genetic origin, but usually are sporadic cases related to environmental factors such as drugs exposition and maternal trauma. A 5-year-old girl and a 1-year-old boy were born with Mobius sequence and arthrogryposis multiplex congenital, respectively. During pregnancies, the mother had vaginal bleeding at 7 weeks and used crack (free-based cocaine) in the first trimester, respectively. The girl also has equinovarus talipes and autistic behavior. The boy has arthrogryposis with flexion contractures of the feet and knees. A vascular disruption, due to hemorrhage and cocaine exposure, causing a transient ischemic insult to embryos in a critical period of development may be responsible for distinct phenotypes in these cases.
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is caused by mutation of the autoimmune regulator (AIRE) gene, is a highly variable disease characterized by multiple endocrine failure, chronic mucocutaneous candidiasis, and various ectodermal defects. AIRE is a transcriptional regulator classically expressed in medullary thymic epithelial cells, monocytes, macrophages, and dendritic cells. Previous studies have suggested that AIRE can shuttle between the nucleus and cytoplasm of cells, although its cytoplasmic functions are poorly characterized. Through mass spectrometry analysis of proteins co-immunoprecipitating with cytoplasmic AIRE, we identified a novel association of AIRE with the intermediate filament protein cytokeratin 17 (K17) in the THP-1 monocyte cell line. We confirmed AIRE expression in HaCaT epidermal keratinocytes, as well as its interaction with K17. Confocal microscopy of human fetal and adult scalp hair follicles demonstrated a cytoplasmic pattern of AIRE staining that moderately colocalized with K17. The cytoplasmic association of AIRE with the intermediate filament network in human epidermal and follicular keratinocytes may provide a new path to understanding the ectodermal abnormalities associated with the APECED syndrome. (Am J Pathol 2011, 178:983-988; DOI: 10.1016/j.ajpath.2010.12.007)