86 resultados para DOMAIN TRANSFER
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Angiotensin I-converting enzyme (ACE) is recognized as one of the main effector molecules involved in blood pressure regulation. In the last few years some polymorphisms of ACE such as the insertion/deletion (I/D) polymorphism have been described, but their physiologic relevance is poorly understood. In addition, few studies investigated if the specific activity of ACE domain is related to the I/D polymorphism and if it can affect other systems. The aim of this study was to establish a biochemical and functional characterization of the I/D polymorphism and correlate this with the corresponding ACE activity. For this purpose, 119 male brazilian army recruits were genotyped and their ACE plasma activities evaluated from the C- and N-terminal catalytic domains using fluorescence resonance energy transfer (FRET) peptides, specific for the C-domain (Abz-LFK(Dnp)OH), N-domain (Abz-SDK(Dnp)P-OH) and both C- and N-domains (Abz-FRK(Dnp)P-OH). Plasma kallikrein activity was measured using Z-Phe-Arg-AMC as substrate and inhibited by selective plasma kallikrein inhibitor (PKSI). Some physiological parameters previously described related to the I/D polymorphism such as handgrip strength, blood pressure, heart rate and BMI were also evaluated. The genotype distribution was II n = 27, ID n = 64 and DD n = 28. Total plasma ACE activity of both domains in II individuals was significantly lower in comparison to ID and DD. This pattern was also observed for C- and N-domain activities. Difference between ID and DD subjects was observed only with the N-domain specific substrate. Blood pressure, heart rate, handgrip strength and BMI were similar among the genotypes. This polymorphism also affected the plasma kallikrein activity and DD group presents high activity level. Thus, our data demonstrate that the I/D ACE polymorphism affects differently both ACE domains without effects on handgrip strength. Moreover, this polymorphism influences the kallikrein-kinin system of normotensive individuals. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In order to provide adequate multivariate measures of information flow between neural structures, modified expressions of partial directed coherence (PDC) and directed transfer function (DTF), two popular multivariate connectivity measures employed in neuroscience, are introduced and their formal relationship to mutual information rates are proved.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions, it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in nondimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples. [DOI: 10.1115/1.4003542]
Resumo:
RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell-cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG-GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean population and in a mouse model. Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs. Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients' sera. Simulating LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2 and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3 epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell peptides. Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived LTP.
Resumo:
Background: Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods: B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results: Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19Arf and nutlin-3. Conclusions: To the best of our knowledge, this is the first study to apply both p19Arf and nutlin-3 for the stimulation of p53 activity. These results support the notion that a p53 responsive vector may prove to be an interesting gene transfer tool, especially when combined with p53- activating agents, for the treatment of tumors that retain wild-type p53.
Resumo:
Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.
Resumo:
The longitudinal spin transfer, D(LL), from high energy polarized protons to Lambda and Lambda hyperons has been measured for the first time in proton-proton collisions at s=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. The measurements cover pseudorapidity, eta, in the range |eta|< 1.2 and transverse momenta, p(T), up to 4 GeV/c. The longitudinal spin transfer is found to be D(LL)=-0.03 +/- 0.13(stat)+/- 0.04(syst) for inclusive Lambda and D(LL)=-0.12 +/- 0.08(stat)+/- 0.03(syst) for inclusive Lambda hyperons with <
Resumo:
Angular distributions for the (9)Be((8)Li, (9)Be) (8)Li elastic-transfer reaction have been measured with a 27-MeV (8)Li radioactive nuclear beam. Spectroscopic factors for the <(9)Be vertical bar(8)Li + p > bound system were obtained from the comparison between the experimental differential cross sections and finite-range distorted-wave Born approximation calculations made with the code FRESCO. The spectroscopic factors so obtained are compared with shell-model calculations and other experimental values. Using the present value for the spectroscopic factors, cross sections and reaction rates for the (8)Li(p,gamma) (9)Be direct proton-capture reaction of astrophysical interest were calculated in the framework of the potential model.
Resumo:
We present a scheme for quasiperfect transfer of polariton states from a sender to a spatially separated receiver, both composed of high-quality cavities filled by atomic samples. The sender and the receiver are connected by a nonideal transmission channel -the data bus- modelled by a network of lossy empty cavities. In particular, we analyze the influence of a large class of data-bus topologies on the fidelity and transfer time of the polariton state. Moreover, we also assume dispersive couplings between the polariton fields and the data-bus normal modes in order to achieve a tunneling-like state transfer. Such a tunneling-transfer mechanism, by which the excitation energy of the polariton effectively does not populate the data-bus cavities, is capable of attenuating appreciably the dissipative effects of the data-bus cavities. After deriving a Hamiltonian for the effective coupling between the sender and the receiver, we show that the decay rate of the fidelity is proportional to a cooperativity parameter that weighs the cost of the dissipation rate against the benefit of the effective coupling strength. The increase of the fidelity of the transfer process can be achieved at the expense of longer transfer times. We also show that the dependence of both the fidelity and the transfer time on the network topology is analyzed in detail for distinct regimes of parameters. It follows that the data-bus topology can be explored to control the time of the state-transfer process.
Resumo:
We report a study of dynamic effects detected in the time-resolved emission from quantum dot ensembles. Experimental procedures were developed to search for common behaviors found in quantum dot systems independently of their composition: three quantum dot samples were experimentally characterized. Systems with contrasting interdot coupling are compared and their sensitivity to the excitation energy is analyzed. Our experimental results are compared and contrasted with other results available in literature. The optical recombination time dependence on system parameters is derived and compared to the experimental findings. We discuss the effects of occupation of the ground state in both valence and conduction bands of semiconductor quantum dots in the dynamics of the system relaxation as well as the nonlinear effects.
Resumo:
We investigate the role of the dc Stark effect in multilevel pairwise interactions between cold Rydberg atoms. We have observed the decay of nD + nD quasi-molecules by detecting the products in the (n + 2) P state after pulsed excitation for 29 <= n <= 41. The decay rate can be manipulated with a dc electric field and requires a consideration of the multilevel nature of the process to explain the observations. The time dependence of the (n + 2) P signal is found to support a time-dependent picture of the dynamics.