44 resultados para DNA binding and transactivation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dps, found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress and/or nutrient-limited environment. Dps has been shown to accumulate during the stationary phase, to bind to DNA non-specifically, and to form a crystalline structure that compacts and protects the chromosome. Our previous results have indicated that Dps is glycosylated at least for a certain period of the bacterial cell physiology and this glycosylation is thought to be orchestrated by some factors not yet understood, explaining our difficulties in standardizing the Dps purification process. In the present work, the open reading frame of the dps gene, together with all the upstream regulatory elements, were cloned into a PCR cloning vector. As a result, the expression of dps was also controlled by the plasmid system introduced in the bacterial cell. The gene was then over-expressed regardless of the growth phase of the culture and a glycosylated fraction was purified to homogeneity by lectin-immobilized chromatography assay. Unlike the high level expression of Dps in Salmonella cells, less than 1% of the recombinant protein was purified by affinity chromatography using jacalin column. Sequencing and mass spectrometry data confirmed the identity of the dps gene and the protein, respectively. In spite of the low level of purification of the jacalin-binding Dps, this work shall aid further investigations into the mechanism of Dps glycosylation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmomycin D (CosD) is an anthracycline that has two trisaccharide chains linked to its ring system. Gel electrophoresis showed that CosD formed stable complexes with plasmid DNA under conditions where daunorubicin (Dn) and doxorubicin (Dx) dissociated to some extent during the experiments. The footprint and stability of CosD complexed with 10- and 16 trier DNA was investigated using several applications of electrospray ionisation mass spectrometry (ESI-MS). ESI-MS binding profiles showed that fewer CosD molecules bound to the sequences than Dn or Dx. In agreement with this, ESI-MS analysis of nuclease digestion products of the complexes showed that CosD protected the DNA to a greater extent than Dn or Dx. In tandem MS experiments, all CosD-DNA complexes were more stable than Dn- and Dx-DNA complexes. These results Support that CosD binds more tightly to DNA and exerts a larger footprint than ESI-MS investigations of the binding properties of CosD Could be carried out rapidly and using only small amounts of sample. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yerba mate (Ilex paraguariensis) is rich in several bioactive compounds that can act as free radical scavengers. Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence DNA repair in male Swiss mice. Forty animals were randomly assigned to four groups. The animals received three different doses of mate tea aqueous extract, 0.5, 1.0 or 2.0 g/kg, for 60 days. After intervention, the liver, kidney and bladder cells were isolated and the DNA damage induced by H2O2 was investigated by the comet assay. The DNA repair process was also investigated for its potential to protect the cells from damage by the same methodology. The data presented here show that mate tea is not genotoxic in liver, kidney and bladder cells. The regular ingestion of mate tea increased the resistance of DNA to H2O2-induced DNA strand breaks and improved the DNA repair after H2O2 challenge in liver cells, irrespective of the dose ingested. These results suggest that mate tea could protect against DNA damage and enhance the DNA repair activity. Protection may be afforded by the antioxidant activity of the mate tea's bioactive compounds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lutein (LT) is the second most prevalent carotenoid in human serum, and it is abundantly present in dark, leafy green vegetables. The objectives of this study were to evaluate the genotoxicity and mutagenicity of LT, and its protective effects in vivo against DNA damage and chromosome instability induced by cisplatin (cDDP). For this purpose, we used the comet assay and micronucleus (MN) test, and we evaluated the antioxidant effects of LT by determination of enzymatic (catalase-CAT) and non-enzymatic (reduced glutathione-GSH) activity. Mice were divided into six groups: cDDP, mineral oil (OM), LT groups and LT + cDDP groups. To perform the MN test on peripheral blood (PB) cells, blood samples were collected before the first treatment (T0), and 36 h (T1) and 14 days (T2) after the first treatment. To perform the comet assay, blood samples were collected 4 h after the first and the last treatment. Oxidative capacity was analyzed in total blood that was collected 24 h after the last treatment, when bone marrow (BM) sample was also collected for the MN test. No genotoxic or mutagenic effects of LT were observed for the doses evaluated. We did find that this carotenoid was able to reduce the formation of crosslinks and chromosome instability induced by cDDP. No differences were observed in CAT levels, and LT treatment increased GSH levels compared with a negative control group, reinforcing the role of this carotenoid as an antioxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: p63 gene is a p53 homologue that encodes proteins with transactivation, DNA-binding and tetramerisation domains. The isoforms TAp63 and TAp73 transactivate p53 target genes and induce apoptosis, whereas the isoforms Delta Np63 and Delta Np73 lack transactivation and might have dominant-negative effects in p53 family members. p63 is expressed in germinal centre lymphocytes and can be related to the development of the lymphoma, but the prognostic significance of its expression in the survival of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. Aims: To determine whether quantitative immunohistochemical (IHC) analysis of p63 protein expression correlates with CD10 antigen, Bcl-6 antigen and IRF4 antigen expression and to determine whether p63 is a surrogate predictor of overall survival in high-intermediate and high risk DLBCL populations. Methods: CD10, Bcl-6 and IRF4 expression were retrospectively evaluated by IHC in 73 samples of high intermediate and high risk DLBCL and were used to divide the lymphomas into subgroups of germinal centre B-celllike (GCB) and activate B-cell-like (ABC) DLBCL. Similarly, p63 expression was evaluated by IHC and the results were compared with subgroups of DLBCL origin and with the survival rates for these patients. Results: p63 was expressed in more than 50% of malignant cells in 11 patients and did not show correlation with subgroups of GCB-like DLBCL or ABC-like DLBCL, but p63(+) patients had better disease-free survival (DFS) than those who were negative (p = 0.01). Conclusions: p63(+) high-intermediate and high risk DLBCL patients have a better DFS than negative cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid DNA extraction was used for T. cruzi detection in triatomines dry fecal spots collected on filter paper and analyzed by PCR. Fifty T infestans were fed on experimentally infected Balb/C mice with high T. cruzi parasitemia and divided into five groups of len triatomines, and 100 triatomines were infected with lower parasitemia and divided into five groups of 20 triatomines, One dry fecal spot was analyzed per group on days 1, 2, 3, 4 and 5 post feeding. Amplification targeted T. cruzi TCZ sequence and resulted positive from day 4 after bugs feeding in the two models (high and lower parasitemia). The rapid DNA isolation and PCR proposed are suitable for detection of T. cruzi DNA in in filter paper and should be considered in field research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) alterations and their clinical and pathological implications have been analyzed in several human malignancies. A marked decrease in mtDNA copy number along with the increase in malignancy was observed in diffusely infiltrating astrocytomas (24 WHO grade II, 18 grade III, and 78 grade IV or GBM) compared to non-neoplastic brain tissues, being mostly depleted in GBM. Although high relative gene expression levels of mtDNA replication regulators (mitochondrial polymerase catalytic subunit (POLG), transcription factors A (TFAM), B1 (TFB1M) and B2 (TFB2M)) were detected, it cannot successfully revert the mtDNA depletion observed in our samples. On the other hand, a strong correlation among the expression levels of mitochondrial transcription factors corroborates with the TFAM role in the direct control of TFB1M and TFB2M during initiation of mtDNA replication. POLG expression was related to decreased mtDNA copy number, and its overexpression associated with TFAM expression levels also have an impact on long-term survival among GBM patients, interpreted as a potential predictive factor for better prognosis. (C) 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impaired DNA repair efficiency in systematic lupus erythematosus (SLE) patients has been reported ill some studies, mainly regarding the repair of oxidative damage, but little is known about repair kinetics towards primarily single-stranded DNA breaks. In the present study, we aimed to investigate: (a) the efficiency of SLE peripheral blood leucocytes in repairing DNA damage induced by ionizing radiation and (b) the association of DNA repair gene (XRCC1 Arg399Gln, XRCC3 Thr241Met and XRCC4 Ile401Thr) polymorphisms in SLE patients, considering the whole group, or stratified sub-groups according to clinical and laboratory features. A total of 163 SLE patients and 125 healthy control were studied. The kinetics of DNA strand break repair was evaluated by the comet assay, and genotyping for DNA repair genes was performed by PCR-RFLP. Compared with controls. SLE leucocytes exhibited decreased efficiency of DNA repair evaluated at 30 min following irradiation. A significant association with DNA repair gene polymorphisms was not observed for the whole group of SLE patients; however, the XRCC1Arg399Gln polymorphism was associated with the presence of anti-dsDNA antibody. The concomitance of two DNA repair polymorphic sites was associated with the presence of neuropsychiatric manifestations and antiphospholipid antibody syndrome. Taken together, these results indicated that SLE leucocytes repair less efficiently the radiation-induced DNA damage, and DNA repair polymorphic sites may predispose to the development of particular clinical and laboratory features. Lupus (2008) 17, 988-995.