404 resultados para DIET-INDUCED ATHEROSCLEROSIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Chamydophila pneumoniae (CP) and/or Mycoplasma pneumoniae ( MP) are two bacteria detected in vulnerable atheromas. In this study we aimed to analyze whether CP and/or MP aggravates atherosclerosis induced by cholesterol-enriched diet in C57BL/6 apoE KO male mice. Thirty male apoE KO mice aged eight weeks fed by a diet containing 1% cholesterol until 32 weeks of age were divided into four groups: the first was inoculated with CP (n = 7), the second with MP (n = 12), the third with both CP + MP ( n = 5), and the fourth with saline (sham n = 6). The animals were re-inoculated at 36 weeks of age, and sacrificed at 40 weeks of age. Two ascending aorta and one aortic arch segments were sampled. In the most severely obstructed segment, vessel diameter, plaque height, percentage of luminal obstruction and the degree of adventitial inflammation were analyzed. The plaque area/intimal surface ratio was obtained by measuring all three segments. The adventitial inflammation was semiquantified (0 absent, 1 mild, 2 moderate, and 3 diffuse). Results: The mean and standard deviation of plaque height, % luminal obstruction, external diameter, the plaque area/intimal surface ratio and the adventitial inflammation values are the following for each group: MP (0.20 +/- 12 mm, 69 +/- 26%, 0.38 +/- 0.11 mm, 0.04 +/- 0.04 and 0.22 +/- 0.67), CP (0.23 +/- 0.08 mm, 90 +/- 26%, 0.37 +/- 0.08 mm, 0.04 +/- 0.03, and 0.44 +/- 0.53), MP + CP ( 18 +/- 0.08 mm, 84 +/- 4.0%, 0.35 +/- 0.25 mm, 0.03 +/- 0.03 and 1.33 +/- 0.82) and sham (0.08 +/- 0.09 mm, 42 +/- 46%, 0.30 +/- 0.10 mm, 0.02 +/- 0.03 and 0.71 +/- 0.76). A wider area of plaque/intimal surface was observed in MP + CP inoculated groups (p = 0.07 and 0.06) as well as an increased plaque height in CP (p = 0.01) in comparison with sham group. There was also an increased luminal obstruction (p = 0.047) in CP inoculated group in comparison to sham group. Adventitial inflammation in MP + CP inoculated group was higher than MP, CP and the sham groups (p = 0.02). Conclusion: Inoculation of CP, MP or both agents in C57BL/6 apoE KO male mice caused aggravation of experimental atherosclerosis induced by cholesterol-enriched diet, with distinct characteristics. CP inoculation increased the plaque height with positive vessel remodeling and co-inoculation of MP + CP caused the highest adventitial inflammation measures.
Resumo:
Thyroid hormone receptor beta (TR beta also listed as THRB oil the MGI Database)-selective agonists activate brown adipose tissue (BAT) thermogenesis, while only minimally affecting cardiac activity or lean body mass. Here, we tested the hypothesis that daily administration of the TR beta agonist GC-24 prevents the metabolic alterations associated with a hypercaloric diet. Rats were placed on a high-fat diet and after a month exhibited increased body weight (BW) and adiposity, fasting hyperglycemia and glucose intolerance, increased plasma levels of triglycerides, cholesterol, nonesterified Fatty acids and interleukin-6. While GC-24 administration to these animals did not affect food ingestion or modified the progression of BW gain, it did increase energy, g the increase in adiposity Without expenditure, eliminating causing cardiac hypertrophy Fasting hyperglycemia remained unchanged, but treatment with GC-24 improved glucose I tolerance by increasing insulin Sensitivity and also normalized plasma triglyceride levels. plasma cholesterol levels were only Partially normalized and liver cholesterol content remained high in the GC-24-treated animals. Gene expression in liver, skeletal muscle, and white adipose tissue was only minimally affected by treatment with GC-24, with the main target being BAT In conclusion, during high-fat feeding treatment with the TR beta-selective agonist, GC-24 only partially improves metabolic control probably as a result Of accelerating the resting metabolic rate. Journal of Endocrinology (2009) 203, 291-299
Resumo:
This experiment was designed to examine changes in milk fatty acids during fish oil-induced milk fat depression (MFD) and to test the theory that these changes are related to milk fat fluidity. The experiment was divided into three periods: 1) Baseline: all cows (n = 12) received a high fiber diet without fish oil (FO) for 12 days; 2) Treatment: 4 cows/group received the following treatments for 21 days: a) Low fiber diet without FO (LF), b) High fiber diet+FO (HF+FO) and c) Low fiber diet+FO (LF+FO); 3) Post-treatment: cows returned to the baseline diet and were monitored for 12 days. FO was included at 1.6% DM and HF and LF diets had 40 and 26% NDF, respectively. Milk fat content and yield were unchanged by the LF diet, but were reduced by FO diets at both dietary fiber levels and recovered in the post-treatment period. FO diets caused a pronounced reduction in stearic and oleic acid concentrations in milk fat and an equally pronounced increase in trans-18:1 fatty acid concentrations. Milk fat mean melting point (MMP) was correlated with MFD (r=0.73) and with milk oleic acid concentration (r=-0.92). The ratio of oleic:stearic in milk fat increased gradually and consistently in response to FO. Trans-C18:1 isomers with double bounds at carbon :<= 10 increased with greater MFD and those with double bonds at carbon ! I I decreased with greater MFD. Trans-9 cis-11 CLA explained more than 80% of MFD and was strongly correlated with trans-10 C18:1. Maintenance of MMP below 39-40 degrees C suggests that the mammary gland was able to secrete only milk fat with adequate fluidity and that MFD could be an adaptation mechanism to prevent secretion of milk with higher MMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The inhibitory effects of mate tea (MT), a beverage produced with leaves from Ilex paraguariensis, in vitro lipase activity and on obesity in obese mice models were examined. For the in vitro experiment, porcine and human pancreatic lipase (PL) activities were determined by measuring the rate of release of oleic acid from hydrolysis of olive oil emulsified with taurocholate, phospholipids, gum arabic, or polyvinyl alcohol. For the in vivo experiments, animals were fed with a standard diet (SD, n = 10) or high-fat diet (HFD, n = 30) for 16 weeks. After the first 8 weeks on the HFD, the animals were treated with 1 and 2 g/kg of body weight of MT. The time course of the body weight and obesity-related biochemical parameters were evaluated. The results showed that MT inhibited both porcine and human PL (half-maximal inhibitory concentration = 1.5 mg MT/ml) and induced a strong inhibition of the porcine lipase activity in the hydrolysis of substrate emulsified with taurocholate + phosphatidylcholine (PC) (83 +/- 3.8%) or PC alone (62 +/- 4.3%). MT suppressed the increases in body weight (P < 0.05) and decreased the serum triglycerides and low-density lipoprotein (LDL)-cholesterol concentrations at both doses (from 190.3 +/- 5.7 to 135.0 +/- 8.9 mg/dl, from 189.1 +/- 7.3 to 129.3 +/- 17.6 mg/dl; P < 0.05, respectively) after they had been increased by the HFD. The liver lipid content was also decreased by the diet containing MT (from 132.6 +/- 3.9 to 95.6 +/- 6.1 mg/g of tissue; P < 0.05). These results suggest that MT could be a potentially therapeutic alternative in the treatment of obesity caused by a HFD.
Resumo:
Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.
Resumo:
Objective We investigated the effects of high-fat diet-induced obesity on vascular proinflammatory factors and oxidative stress on endothelium-dependent relaxation of the aorta. Methods Female Swiss mice were submitted to a high-fat diet for 16 weeks. At the end of the experimental period, we evaluated blood pressure, relaxation in response to acetylcholine in aortic rings in the absence and the presence of the superoxide anion scavenger, superoxide dismutase (SOD, 150 U/ml), and the nuclear factor (NF)-kappa B inhibitor, sodium salicylate (5 mmol/l). Aortic protein expression of endothelial nitric oxide synthase, Cu/Zn-SOD, NF-kappa B, I kappa B-alpha, and proinflammatory cytokines were also evaluated. Results Obese mice presented higher systolic and diastolic blood pressure than control mice (P<0.05). The relaxation of aortas to acetylcholine, but not to sodium nitroprusside, was significantly decreased in obese mice and was corrected by both SOD and sodium salicylate (P<0.05). The protein expression of endothelial nitric oxide synthase and Cu/Zn-SOD was significantly decreased in aorta from obese mice (P<0.05). Total p65 NF-kappa B subunit protein expression was not affected by obesity, but the protein expression of NF-kappa B inhibitor I kappa B-alpha was lower in aorta from obese mice (P<0.05). There were no significant differences in the interleukin (IL)-1 beta and IL-6 protein expression between groups. In contrast, the expression of TNF-alpha was significantly increased in aortas from obese mice. Conclusion Our resultssuggest that the reducedantioxidant defense and the local NF-kappa B pathway play an important role in the impairment of endothelium-dependent relaxation in aorta from obese mice. J Hypertens 28: 2111-2119 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010
Resumo:
In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.
Resumo:
Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO(2max) for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-alpha levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-alpha and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), INF-alpha (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect. Published by Elsevier Ltd.
Resumo:
Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNF alpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity. Journal of Endocrinology (2010) 206, 65-74
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H(2)O(2) release using different substrates and ATP-sensitive K(+) transport activities are increased in mitochondria from animals on high fat diets. The increase in H(2)O(2) release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K(+) channels, indicating it was not related to an observed increase in K(+) transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K(+) transport in mitochondria can be modulated by diet.