219 resultados para DENTAL ADHESIVE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Purpose: The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. Materials and Methods: One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm(2)). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 Subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey`s test and Dunnett`s test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). Results: No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). Conclusion: The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.
Resumo:
Purpose: To assess the effects of three different dental adhesive systems on the formation of secondary root caries, in vitro, with a standardized interfacial gap in a filled cavity model. Methods: 40 sound human molars were selected and randomly assigned to four experimental groups: Clearfil SE Bond (CSEB), Xeno III (X-III), Scotchbond Multi-Purpose Plus (SBMP) and negative control (NC) without an adhesive system. After the standardized Class V cavity preparations on the buccal and lingual surfaces, restorations were placed with resin composite (Filtek Z250) using a standardized interfacial gap, using a 3 x 2 mm piece of 50 mu m metal matrix. The teeth were sterilized with gamma irradiation and exposed to a cariogenic challenge using a bacterial system with Streptococcus mutans. Depth and extension of wall lesions formed and the depth of outer lesions were measured by software coupled with light microscopy. Results: For wall lesion extension the ANOVA test showed differences between groups except between X-HI and SBMP (P= 0.294). The Tukey`s test of confidence intervals indicated smaller values for the CSEB group than for the others. For wall lesion depth the CSEB group also presented the smallest mean values of wall lesion depth when compared to the others (P< 0.0001) for all comparisons using Tukey`s test. Regarding outer lesion depth, all adhesives showed statistically similar behavior. SEM evaluation of the morphologic appearance of caries lesions confirmed the statistical results showing small caries lesion development for cavities restored with CSEB adhesive system, which may suggest that this adhesive system interdiffusion zone promoted a good interaction with subjacent dentin protecting the dental tissues from recurrent caries. (Am J Dent 2010;23:93-97).
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The aim of this study was to detect the influence of (1) storage period of heparinized blood, (2) type of blood and presence of contaminant, (3) application mode of cleansing agents, and (4) efficacy of cleansing agents on contaminated enamel and dentin during the adhesion process of a one-step adhesive system. Materials and Methods: One hundred four human molars were sectioned into halves along the long axis for enamel and dentin tests. Heparinized and fresh blood were obtained from the same donor, applied and dried to maintain a layer of dry blood on the top of samples. The cleansing agents used were hydrogen peroxide, anionic detergent, and antiseptic solution. A one-step adhesive system (Clearfil S3 Bond) was applied on the dental surface, and composite resin cylinders were built up using Tygon tubing molds. After 24 h, the mu SBS test (1 mm/min) and fracture analysis were performed. Results: There was no statistically significant difference in bond strength values regarding the storage period of heparinized blood and the types of blood. Groups without contamination presented higher bond strengths than contaminated groups. The application mode of the cleansing agents had no influence on bond strength results. There was no statistically significant difference among cleansing agents and they were as effective as a water stream in counteracting the effect of blood contamination. Conclusion: Heparinized blood can be used as a contaminant for up to one week, and it is a reliable procedure to standardize the contaminant. The cleansing agents can be used without friction. A water stream is sufficient to remove blood contamination from dental tissues, before the application of a one-step adhesive system.
Resumo:
Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009
Resumo:
This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
Because a greater research effort has been directed to analyzing the adhesive effectiveness of self etch primers to dentin, the aim of this study was to evaluate, by microtensile testing, the bond strength to enamel of a composite resin combined with a conventional adhesive system or with a self-etching primer adhesive, used according to its original prescription or used with previous acid etching. Thirty bovine teeth were divided into 3 groups with 10 teeth each (n= 10). In one of the groups, a self-etching primer (Clearfil SE Bond - Kuraray) was applied in accordance with the manufacturer's instructions and, in the other, it was applied after previous acid etching. In the third group, a conventional adhesive system (Scotchbond Multipurpose Plus - 3M-ESPE) was applied in accordance with the manufacturer's instructions. The results obtained by analysis of variance revealed significant differences between the adhesive systems (F = 22.31). The self-etching primer (Clearfil SE Bond) presented lower enamel bond strength values than the conventional adhesive system (Scotchbond Multipurpose Plus) (m = 39.70 ± 7.07 MPa) both when used according to the original prescription (m = 27.81 ± 2.64 MPa) and with previous acid etching (m = 25.08 ± 4.92 MPa).
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp). Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX) and one self-etch system (Clearfil SE Bond - SE) were employed, varying the presence or absence of an intrapulpal pressure (IPP) simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS) testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05). The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.
Resumo:
The aim of this in vitro study was to evaluate the tensile bond strength of a self-etching adhesive system to three different dentinal substrates. Primary molar teeth that had been recently exfoliated (RE), with unknown time of exfoliation (UT), and extracted due to prolonged retention (PR) were used for this investigation. Ten primary molar teeth of each group were cut in the middle following the mesio-distal direction, creating a total of twenty specimens per group. The specimens were included in acrylic resin and had a flat dentin surface exposed. The self-etching adhesive system was applied to this surface and a 3-millimeter high cone with diameter of 2 mm in the adhesion area was constructed using composite resin. The specimens were stored in distilled water at 37ºC for 24 hours. Fifteen specimens of each substrate were used for the tensile bond test (n = 15) and 5 had the interface analyzed by scanning electron microscopy (SEM). The data was examined by one-way ANOVA and presented no significant differences between groups (p = 0.5787). The mean values obtained for RE, UT and PR were 18.39 ± 9.70, 19.41 ± 7.80, and 23.30 ± 9.37 MPa, respectively. Any dentinal substrates of primary teeth studied are safe for tensile bond strength tests with adhesive systems.
Resumo:
The objective of this study was to evaluate the effectiveness of a therapeutic sealant to arrest non-cavitated proximal carious lesion progression. The study population comprised 44 adolescents who had bitewing radiographs taken for caries diagnosis. Non-cavitated lesions extending up to half of dentin thickness were included in the sample. In the experimental group (n = 33), the proximal caries-lesion surfaces were sealed with an adhesive (OptiBond Solo, Kerr) after tooth separation. The control group (n = 11) received no treatment, except for oral hygiene instructions including use of dental floss. Follow-up radiographs were taken after one year and were analyzed in comparison with baseline radiographs. In a blind study setting, visual readings were performed by two examiners, blinded to whether the examined radiograph was baseline or follow-up, and whether it concerned a test or control lesion. The efficacy of sealing treatment was evaluated by the McNemar test (0.05). About 22% of the sealed lesions showed reduction, 61% showed no change and 16% showed progression. For the control lesions, the corresponding values were 27%, 36% and 36% respectively. The number of lesions that showed reduction and no changes were merged and therefore 83.3% of the sealed lesions and 63.6% of the control lesions were considered clinically successful. No statistical significance was detected (p > 0.05). In the course of 1 year, sealing proximal caries lesions was not shown to be superior to lesion monitoring.
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control-G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water-G3) or using a chemo-mechanical method (Carisolv-G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey`s test (P <= 0.05). The samples of sound dentine presented higher bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.
Resumo:
Purpose: To evaluate the influence of cleaning procedures (pumice, anionic detergent and both procedures together) on the tensile bond strength of etch-and-rinse and self-etch adhesive systems to bovine enamel and dentin in vitro. Methods: Eighty non-carious, bovine incisors were extracted, embedded in acrylic resin to obtain enamel/dentin specimens. Flat bonding surfaces were obtained by grinding. Groups were divided according to substrate (enamel or dentin), adhesive system [etch-and-rinse, Adper Single Bond 2 (SB) or self-etch, Clearfil Protect Bond (PB)]; and cleaning substances (pumice, anionic detergent and their combination). The teeth were randomly divided into 20 groups (n=8): G1 - Enamel (E) + SB; G2 -E + oil (O) + SB; G3 - E + O + Pumice (P) + SB; G4 - E + O + Tergentol (T) + SB; G5 - E + O + P + T + SB; G6 - E + PB; G7 - E + O + PB; G8 - E + O + P + PB; G9 - E + O + T + PB; GIO - E + O + P + T + PB; G11 - Dentin (D) + SB; G12 D + SB + O; G13 - D + SB + O + P; G14 - D + SB + O + T; G15 - D + SB + O + P + T; G16 - D + PB; G17 - D + O + PB +; G18 - D + O + P + PB; G19 - D + O + T + PB; G20 - D + O + P + T + PB. Specimens were contaminated with handpiece oil for 5 seconds before bonding. Adhesive systems and resin composite were applied according to manufacturers` instructions. Specimens were tested in tension after 24 hours of immersion using a universal testing machine at a crosshead speed of 0.5 mm/minute. Bond strengths were analyzed with ANOVA. Failure sites were observed and recorded. Results: Tensile bond strength in MPa were: G1 (23.6 +/- 0.9); G2 (17.3 +/- 2.2); G3 (20.9 +/- 0.9); G4 (20.6 +/- 0.5); G5 (18.7 +/- 2.3); G6 (23.0 +/- 1.0); G7 (21.5 +/- 2.4); G8 (19.9 +/- 1.3); G9 (22.1 +/- 1.2); G10 (19.1 +/- 1.2); G11 (18.8 +/- 1.3); G12 (15.7 +/- 2.1); G13 (17.8 +/- 3.3); G14 (15.3 +/- 2.9); G15 (15.6 +/- 1.9); G16 (14.7 +/- 2.3); G17 (5.5 +/- 0.9); G18 (19.3 +/- 1.8); G19 (15.6 +/- 1.6); G20 (20.3 +/- 3.9). Statistical analysis showed that the main factors substrate and cleaning were statistically significant, as well as the triple interaction between factors of variance. However, the factor adhesive system did not show statistical difference. Oil contamination reduced bond strengths, being less detrimental to enamel than to dentin. Etch-and-rinse (SB) and two-step self-etch (PB) systems had similar bond strengths in the presence of oil contamination. For etch-and-rinse (SB), the cleaning procedures were able to clean enamel, but dentin was better cleaned by pumice. When self-etch (PB) system was used on enamel, anionic detergent was the best cleaning substance, while on dentin the tested procedures were similarly efficient.
Resumo:
The aim of this study was to evaluate the micro-shear bond strength of 5 adhesive systems to enamel, one single-bottle acid-etch adhesive (O), two self-etching primers (P) and two all-in-one self-etching adhesives (S). Method: Sixty premolar enamel surfaces (buccal or lingual) were ground flat with 400- and 600-grit SiC papers and randomly divided into 5 groups (n=12), according to the adhesive system.. SB2 - Single Bond 2 (O); CSE - Clearfil SE Bond (P); ADS - AdheSE (P); PLP - Adper Prompt L-Pop (S); XE3 - Xeno III (S). Tygon tubing (inner diameter of 0.8mm) restricted the bonding area to obtain the resin composite (Z250) cylinders. After storage in distilled water at 37 degrees C for 24h and thermocycling, micro-shear testing was performed (crosshead speed of 0.5mm/min). Data were submitted to one-way ANOVA and Tukey test (a=5%). Samples were also subjected to stereomicroscopic and SEM evaluations after micro-shear testing. Mean bond strength values (MPa +/- SD) and the results of Tukey test were: SB2: 36.36(+/- 3.34)a; ADS: 33.03(+/- 7.83)a; XE3: 32.76(+/- 5.61)a; CSE: 30.61(+/- 6.68)a; PLP: 22.17(+/- 6.05)b. Groups with the same letter were not statistically different. It can be concluded that no significant difference was there between SB2, ADS, XE3 and CSE, in spite of different etching patterns of these adhesives. Only PLP presented statistically lower bond strengths compared with others. J Clin Pediatr Dent 35(3): 301-304, 2011