135 resultados para DEFORMATION POTENTIALS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Contrasting LH-HH subband splitting of strained quantum wells grown along [001] and [113] directions
Resumo:
Contrasting responses for the temperature tuning of the electronic structure in semiconductor quantum wells are discussed for heterolayered structures grown along (001) and (113) directions. The temperature affects the strain modulation of the deformation potentials and the effective optical gap is tuned along with the intersub-band splitting in the valence band. A multiband theoretical model accounts for the characterization of the electronic structure, highlighting the main qualitative and quantitative differences between the two systems under study. The microscopic source of strain fields and the detailed mapping of their distribution are provided by a simulation using classical molecular-dynamics technics.
Resumo:
In this work we describe a subtle effect in nuclear physics, associated with three-nucleon forces, which is nevertheless fundamental in the interpretation of experimental results. It is important to notice that three-body effects are of non-pertubative origins, which makes this problem more involving theoretically. The use of Quantum Chromodynamics is fundamental in the understanding of the physics process.
Resumo:
Deformation leads to a hardening of steel due to an increase in the density of dislocations and a reduction in their mobility, giving rise to a state of elevated residual stresses in the crystal lattice. In the microstructure, one observes an increase in the contribution of crystalline orientations which are unfavorable to the magnetization, as seen, for example, by a decrease in B(50), the magnetic flux density at a field of 50 A/cm. The present study was carried out with longitudinal strips of fully processed non-oriented (NO) electrical steel, with deformations up to 70% resulting from cold rolling in the longitudinal direction. With increasing plastic deformation, the value of B(50) gradually decreases until it reaches a minimum value, where it remains even for larger deformations. On the other hand, the coercive field H(c) continually increases. Magnetometry results and electron backscatter diffraction results are compared and discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560895]
Resumo:
Strawberries represent the main source of ellagic acid derivatives in the Brazilian diet, corresponding to more than 50% of all phenolic compounds found in the fruit. There is a particular interest in the determination of the ellagic acid content in fruits because of possible chemopreventive benefits. In the present study, the potential health benefits of purified ellagitannins from strawberries were evaluated in relation to the antiproliferative activity and in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. Therefore, a comparison among ellagic acid, purified ellagitannins, and a strawberry extract was done to evaluate the possible synergistic effects of phenolics. In relation to the antiproliferative activity, it was observed that ellagic acid had the highest percentage inhibition of cell proliferation. The strawberry extract had lower efficacy in inhibiting the cell proliferation, indicating that in the case of this fruit there is no synergism. Purified ellagitannins had high alpha-amylase and ACE inhibitory activities. However, these compounds had low alpha-glucosidase inhibitory activity. These results suggested that the ellagitannins and ellagic acid have good potential for the management of hyperglycemia and hypertension linked to type 2 diabetes. However, further studies with animal and human models are needed to advance the in vitro assay-based biochemical rationale from this study.
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.
Resumo:
We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.
Resumo:
We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.
Resumo:
Study design: Cross-sectional study. Objectives: To observe if there is a relationship between the level of injury by the American Spinal Cord Injury Association (ASIA) and cortical somatosensory evoked potential (SSEP) recordings of the median nerve in patients with quadriplegia. Setting: Rehabilitation Outpatient Clinic at the university hospital in Brazil. Methods: Fourteen individuals with quadriplegia and 8 healthy individuals were evaluated. Electrophysiological assessment of the median nerve was performed by evoked potential equipment. The injury level was obtained by ASIA. N(9), N(13) and N(20) were analyzed based on the presence or absence of responses. The parameters used for analyzing these responses were the latency and the amplitude. Data were analyzed using mixed-effect models. Results: N(9) responses were found in all patients with quadriplegia with a similar latency and amplitude observed in healthy individuals; N(13) responses were not found in any patients with quadriplegia. N(20) responses were not found in C5 patients with quadriplegia but it was present in C6 and C7 patients. Their latencies were similar to healthy individuals (P > 0.05) but the amplitudes were decreased (P < 0.05). Conclusion: This study suggests that the SSEP responses depend on the injury level, considering that the individuals with C6 and C7 injury levels, both complete and incomplete, presented SSEP recordings in the cortical area. It also showed a relationship between the level of spinal cord injury assessed by ASIA and the median nerve SSEP responses, through the latency and amplitude recordings. Spinal Cord (2009) 47, 372-378; doi:10.1038/sc.2008.147; published online 20 January 2009
Resumo:
Polymer-modified mortar is widely used to set ceramic tiles used as external finishing for high rise buildings in countries such as Brazil, Israel, Singapore and Portugal, mainly because it shows better bond strength and flexibility as compared to the traditional ones. Despite this, the results in the literature already published concerning the long-term performance of those composite mortars are is not conclusive. This paper, based on a laboratory program, compared the performance over time of four commercial polymer-modified adhesive mortars exposed to a typical Brazilian outdoor aging environment and to an indoor environment in terms of mortar flexibility and the bond strength to porcelain tiles. The results show that under laboratory condition, the mortars are more flexible and have higher bond strength than under external condition, and that there is an important correlation between the transversal deformability and the bond strength. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.
Resumo:
The present work shows measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1045 and ASTM 36 steel deformed samples. The correlation between the MBN root mean square, Barkhausen signal profile and MBN power spectrum with the plastic deformation is established. The results show that the power spectral density of the Barkhausen signal is more effective as nondestructive evaluator than root mean square of Barkhausen signal. The Outcomes also suggest the presence of unbalanced tensions between the surface and the bulk of sample due to the presence of plastic deformation.
Resumo:
The present work presents the measurements of the magnetic Barkhausen noise (MBN) in ASTM 36 steel samples around a pit under plastic deformation. The contour maps obtained from these Barkhausen noise measurements are compared with the finite element analysis of the ideal plastic deformation. Also, a parameter of the Barkhausen signal to detect the plastic deformation around the pit in ASTM 36 steel is obtained. Additionally to that, we propose another MBN parameter to estimate the pit width using the Barkhausen noise. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
To explain the magnetic behavior of plastic deformation of thin magnetic films (Fe and permalloy) on an elastic substrate (nitinol), it is noted that unlike in the bulk, the dislocation density does not increase dramatically because of the dimensional constraint. As a result, the resulting residual stress, even though strain hardening is limited, dominates the observed magnetic behavior. Thus, with the field parallel to the stress axis, the compressive residual stress resulting from plastic deformation causes a decrease in remanence and an increase in coercivity; and with the field perpendicular to the stress axis, the resulting compressive residual stress causes an increase in remanence and a decrease in coercivity. These elements have been inserted into the model previously developed for plastic deformation in the bulk, producing the aforementioned behavior, which has been observed experimentally in the films.
Resumo:
The paper presents the results of a complementary study including magnetic hysteresis loops B(H), magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE) signals measurements for plastically deformed Fe-2%Si samples. The investigated samples had been plastically deformed with plastic strain level (epsilon(p)) up to 8%. The properties of B(H) loops are quantified using the coercivity H(C) and maximum differential permeability mu(rmax) as parameters. The MBN and MAE voltage signals were analysed by means of rms-like voltage (Ub and Ua, respectively) envelopes, plotted as a function of applied field strength. Integrals of the Ub and Ua voltages over half of a period of magnetization were then calculated. It has been found that He and integrals of Ub increase, while mu(rmax) decreases monotonically with increasing epsilon(p). The MAE (Ua) peak voltage at first decreases, then peaks at epsilon(p) approximate to 1.5% and finally decreases again. The integral of the Ua voltage at first increases for low epsilon(p) and then decreases for epsilon(p) > 1.5%. All those various dependence types suggest the possibility of detection of various stages of microstructure change. The above-mentioned results are discussed qualitatively in the paper. Some modelling of the discussed dependency is also presented. (C) 2008 Elsevier Ltd. All rights reserved.