15 resultados para DARK
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Smoking has been positively and fruit and vegetable intake has been negatively associated with cervical cancer, the second most common cancer among women worldwide. However, a lower consumption of fruits and reduced serum carotenoids have been observed among smokers. It is not known whether the smoking effect on the risk of cervical neoplasia is modified by a low intake of fruits and vegetables. The present study examined the combined effects of tobacco smoking and diet using a validated FFQ and serum carotenoid and tocopherol levels on cervical intraepithelial neoplasia grade 3 (CIN3) risk in a hospital-based case-control study conducted in Sao Paulo, Brazil, between 2003 and 2005. The sample comprised 231 incident, histologically confirmed cases of CIN3 and 453 controls. A low intake (<= 39 g) of dark-green and deep-yellow vegetables and fruits without tobacco smoking had a lesser effect on CIN3 (OR 1.14; 95% CI 0.49, 2.65) than among smokers with higher intake (>= 40 g; OR 1.83; 95% CI 0.73, 4.62) after adjusting for confounders. The OR for the joint exposure of tobacco smoking and low intake of vegetables and fruits was greater (3.86; 95% CI 1.74, 8.57; P for trend < 0.001) compared with non-smokers with higher intake after adjusting for confounding variables and human papillomavirus status. Similar results were observed for total fruit, serum total carotene (including beta-, alpha-and gamma-carotene) and tocopherols. These findings suggest that the effect of nutritional factors on CIN3 is modified by smoking.
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
Some observations of galaxies, and in particular dwarf galaxies, indicate a presence of cored density profiles in apparent contradiction with cusp profiles predicted by dark matter N-body simulations. We constructed an analytical model, using particle distribution functions (DFs), to show how a supernova (SN) explosion can transform a cusp density profile in a small-mass dark matter halo into a cored one. Considering the fact that an SN efficiently removes matter from the centre of the first haloes, we study the effect of mass removal through an SN perturbation in the DFs. We find that the transformation from a cusp into a cored profile occurs even for changes as small as 0.5 per cent of the total energy of the halo, which can be produced by the expulsion of matter caused by a single SN explosion.
Resumo:
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Gamma = beta H + gamma H(0), where H is the Hubble parameter and H(0) is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z(eq), the redshift of the epoch of matter - radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z(eq) approximate to 3000 and z approximate to 0) in the evolution of the Universe. The comparison of the parameter values, {beta, gamma}, determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z(eq) from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for beta = 0 this conflict is only at less than or similar to 2 sigma, it worsens as beta increases from zero.
Resumo:
In general, plant material grown in vitro has low photosynthetic ability to achieve positive carbon balances. Therefore, a continuous supply of carbohydrates from the culture medium is required, and sucrose has been the most commonly used carbon source. In this paper, we investigate the effects of different sucrose concentrations and the presence and absence of light on the endogenous levels of soluble carbohydrates and starch as well as on the proliferation and growth of Dendrobium Second Love (Orchidaceae) in vitro. The possibility of using etiolated stem segments as a means for micropropagating this hybrid was also verified. The results obtained indicated that the presence and absence of light and the sucrose concentrations used influenced the amounts of soluble carbohydrates and starch and the proliferation of D. Second Love shoots and roots. An increase in sucrose concentration caused a progressive increase in the amounts of total carbohydrates and starch. Under both light conditions, sucrose was the main sugar found in the shoots followed by glucose and fructose. The addition of sucrose to the culture medium up to 2% and 4% was advantageous to the number of shoots produced per explant and the root longitudinal growth in the presence and absence of light, respectively. Shoot and root dry matter and the number of roots formed per explant increased as sucrose concentration was raised up to 6% in both light treatments. The use of dark-grown shoot segments proved to be a useful and reliable alternative for the micropropagation of this hybrid.
Resumo:
Catasetum fimbriatum plants cultivated in the absence of light exhibit continuous shoot growth leading to the formation of nodes and internodes. On the other hand, when these plants are incubated in the presence of light, shoot longitudinal growth is inhibited and pseudobulbs develop just below the shoot apical meristem. These facts provide evidence of a possible influence of light on mitotic cell division in the shoot apex as well as on pseudobulb initiation. The effects of light and dark on the interruption and/or maintenance of shoot apex mitotic activity and the subsequent formation of pseudobulbs in the sub-meristematic regions were investigated by means of histological and hormonal studies. The interruption of shoot apex development occurred around the 150th d of light incubation and seems to have resulted from the establishment of a strong storage sink in the region of the future pseudobulb, in detriment to the continuous activity of the shoot apical meristem. The reduced total cytokinins/IAA ratio in the apex, mainly due to high levels of IAA, could be a key factor in the interruption of cell divisions. Transfer to the dark brings about the resumption of shoot apex development of plants through the re-entrance of cells in the cell cycle which coincides with a significant increase in the total cytokinins/IAA ratio. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Xeroderma pigmentosum patients suffer from extreme photosensitivity caused by a genetic defect in DNA repair pathways. This condition obliges them to live in darkness and avoid sunshine. Although the molecular basis of the defect has been known for more than 40 years now, the treatment possibilities are very limited, and to date all have been focused on the skin. Herein, we summarize the effects of sunlight and the molecular mechanisms implicated in the defects that lead to this syndrome, as well as the strategies that have been tested to alleviate skin manifestations, including cancer. Preclinical attempts to correct genetic defects by means of different gene therapy approaches are also described. All these efforts are now bringing hope and some light into the life of patients and their families.
Resumo:
Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium when they are in interaction. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark matter. When dark energy does not trace dark matter, we present a new treatment on studying the structure formation in the spherical collapsing system. Furthermore we examine the cluster number counts dependence on the interaction between dark sectors and analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.
Resumo:
We study the mutual interaction between the dark sectors (dark matter and dark energy) of the Universe by resorting to the extended thermodynamics of irreversible processes and constrain the former with supernova type Ia data. As a by-product, the present dark matter temperature results are not extremely small and can meet the independent estimate of the temperature of the gas of sterile neutrinos.
Resumo:
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations: however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.