10 resultados para Crustal Evolution

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Itajai Basin located in the southern border of the Luis Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajai Group is represented by sandstones and conglomerates (BaA(0) Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeiro Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeiro Neisse (arkosic sandstones and siltites), and Ribeiro do Bode (distal silty turbidites) formations. The ApiA(0)na Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajai Basin. The Brusque Group and the Florianpolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, So Miguel and CamboriA(0) complexes. The lack of any oceanic crust in the Itajai Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajai Basin is temporally and tectonically correlated with the Camaqu Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriapolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Rio de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Rio de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today`s coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-So Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frio Terrane into the Goias magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Rio de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane-the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Rio de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the P-T-t evolution of a mid-crustal igneous-metamorphic segment of the Famatinian Belt in the eastern sector of the Sierra de Velasco during its exhumation to the upper crust. Thermobarometric and geochronological methods combined with field observations permit us to distinguish three tectonic levels. The deepest Level I is represented by metasedimentary xenoliths and characterized by prograde isobaric heating at 20-25 km depth. Early/Middle Ordovician granites that contain xenoliths of Level I intruded in the shallower Level II. The latter is characterized by migmatization coeval with granitic intrusions and a retrograde isobaric cooling P-T path at 14-18 km depth. Level II was exhumed to the shallowest supracrustal Level III, where it was intruded by cordierite-bearing granites during the Middle/Late Ordovician and its host-rock was locally affected by high temperature-low pressure HT/LP metamorphism at 8-10 km depth. Level III was eventually intruded by Early Carboniferous granites after long-term slow exhumation to 6-7 km depth. Early/Middle Ordovician exhumation of Level II to Level III (Exhumation Period I,0.25-0.78 mm/yr) was faster than exhumation of Level III from the Middle/Late Ordovician to the Lower Carboniferous (Exhumation Period II, 0.01-0.09 mm/yr). Slow exhumation rates and the lack of regional evidence of tectonic exhumation suggest that erosion was the main exhumation mechanism of the Famatinian Belt. Widespread slow exhumation associated with crustal thickening under a HT regime suggests that the Famatinian Belt represents the middle crust of an ancient Altiplano-Puna-like orogen. This thermally weakened over-thickened Famatinian crust was slowly exhumed mainly by erosion during similar to 180 Myr. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sunsas-Aguapei province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsas orogens. The Sunsas orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwestern most of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsas and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilandia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Parana shear zone network (1.18-1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca-Aguapei basin (1.17-1.15 Ga). The Sunsas belt is comprised by the metamorphosed Sunsas and Vibosi sequences, the Rincon del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield epsilon(Nd(t)) signatures (-0.5 to -4.5) and geochemistry (S,1, A-types) suggesting their origin associated with a continental arc setting. The Sunsas belt evolution is marked by ""tectonic fronts"" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paragua microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapei flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsas dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilandia belt (1.13-1.00 Ga). Conversely, the Aguapei aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsas orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Parana shear zone event and the Sunsas belt, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jaguarao stratoid dacites (Rio Grande do Sul, Brazil) are limited in areal extent, are comprised of about 3.2 km(3) of preserved erupted material, and outcrop only in areas of the region underlain by mylonitic and ultramylonitic rocks. They are S-type volcanic rocks containing cordierite, orthopyroxene, plagioclase, and ilmenite as liquidus phases, and partially melted granite, gneiss, and migmatite enclaves that are very similar to the Precambrian basement rocks. The Jaguarao lavas have distinct geochemical signatures and Sr-Nd isotopes with respect to other volcanic rocks of the region. Available geochronological data for Jaguarao dacites range between 157 +/- 5 Ma and 139.6 +/- 7.4 Ma. Considering the errors, the younger ages obtained for Jaguarao lavas overlap the 138-128 Ma age of rocks of the Serra Geral Group, and thus indicate that the dacites were erupted prior to the break-up of Gondwana in this region. Petrographic, mineralogical, and petrochemical data, as well as the tectonic context of the Jaguarao lavas, suggest that magma genesis was linked, at least in part, to friction melts. The dacitic magma was generated by partial melting reactions involving biotite breakdown in a dominantly quartz-feldspathic source terrane, leaving a granulite facies residue in subsurface. These melts were probably generated as a consequence of crustal thinning linked to simple shear extension just prior to Gondwana break-up and rifting of the southern Atlantic Ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rio Apa cratonic fragment crops out in Mato Grosso do Sul State of Brazil and in northeastern Paraguay. It comprises Paleo-Mesoproterozoic medium grade metamorphic rocks, intruded by granitic rocks, and is covered by the Neoproterozoic deposits of the Corumbi and Itapocurni Groups. Eastward it is bound by the southern portion of the Paraguay belt. In this work, more than 100 isotopic determinations, including U-Pb SHRIMP zircon ages, Rb-Sr and Sm-Nd whole-rock determinations, as well as K-Ar and Ar-Ar mineral ages, were reassessed in order to obtain a complete picture of its regional geological history. The tectonic evolution of the Rio Apa Craton starts with the formation of a series of magmatic arc complexes. The oldest U-Pb SHRIMP zircon age comes from a banded gneiss collected in the northern part of the region, with an age of 1950 +/- 23 Ma. The large granitic intrusion of the Alumiador Batholith yielded a U-Pb zircon age of 1839 +/- 33 Ma, and from the southeastern part of the area two orthogneisses gave zircon U-Pb ages of 1774 +/- 26 Ma and 1721 +/- 25 Ma. These may be coeval with the Alto Terere metamorphic rocks of the northeastern corner, intruded in their turn by the Baia das Garcas granitic rocks, one of them yielding a zircon U-Pb age of 1754 +/- 49 Ma. The original magmatic protoliths of these rocks involved some crustal component, as indicated by the Sm-Nd TDm model ages, between 1.9 and 2.5 Ga. Regional Sr isotopic homogenization, associated with tectonic deformation and medium-grade metamorphism occurred at approximately 1670 Ma, as suggested by Rb-Sr whole rock reference isochrons. Finally, at 1300 Ma ago, the Ar work indicates that the Rio Apa Craton was affected by widespread regional heating, when the temperature probably exceeded 350 degrees C. Geographic distribution, age and isotopic signature of the fithotectonic units suggest the existence of a major suture separating two different tectonic domains, juxtaposed at about 1670 Ma. From that time on, the unified Rio Apa continental block behaved as one coherent and stable tectonic unit. It correlates well with the SW corner of the Amazonian Craton, where the medium-grade rocks of the Juruena-Rio Negro tectonic province, with ages between 1600 and 1780 Ma, were reworked at about 1300 Ma. Looking at the largest scale, the Rio Apa Craton is probably attached to the larger Amazonian Craton, and the actual configuration of southwestern South America is possibly due to a complex arrangement of allochthonous blocks such as the Arequipa, Antofalla and Pampia, with different sizes, that may have originated as disrupted parts of either Laurentia or Amazonia, and were trapped during later collisions of these continental masses.