3 resultados para Critical exponent
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.
Resumo:
We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.