1 resultado para Crime scenes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (5)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Biblioteca Digital da Câmara dos Deputados (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bibloteca do Senado Federal do Brasil (285)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (11)
- Carolina Law Scholarship Repository (2)
- CentAUR: Central Archive University of Reading - UK (26)
- Center for Jewish History Digital Collections (10)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (10)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (25)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (5)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (114)
- Queensland University of Technology - ePrints Archive (229)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (7)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (12)
- University of Michigan (1)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.