7 resultados para Cotton yield
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Annona (Annonaceae) is an important source of fruits in the Brazilian Cerrado and the Amazon Rainforest. Some Annona species are widely commercialized as fresh fruit or as frozen pulp. Seeds are accustomedly discarded. Our main goal was to analyze fatty acids profile from seeds of A. crassiflora and A. coriacea from Cerrado, A. montana from Amazon Forest, and three cultivars (A. cherimola cv. Madeira, A. cherimola x A. squamosa cv. Pink`s Mammonth and A. cherimola x A. squamosa cv. Gefner). The total oil yield ranged between 20 and 42% by weight of dry mass. The A cherimola x A. squamosa cv. Gefner has significantly higher total lipid yield than all other samples. 100 g of fruit of this species present 6-8 g of seeds. Considering the fruit production of Chile (over 221 ton of fruits/year), more than 1300 ton of seed/year could be obtained, which could provide at least 200 ton of seed oil. Oleic acid was predominant for most samples, but for A. montana linoleic acid was the most abundant FA. Phenotypic variation on FAME profile was observed. These new data are an urgent requirement for supporting conservation programs, mainly for Cerrado areas in Brazil.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
Resumo:
Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers