5 resultados para Corrosion Monitor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.