4 resultados para Cooking (Vegetables)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Smoking has been positively and fruit and vegetable intake has been negatively associated with cervical cancer, the second most common cancer among women worldwide. However, a lower consumption of fruits and reduced serum carotenoids have been observed among smokers. It is not known whether the smoking effect on the risk of cervical neoplasia is modified by a low intake of fruits and vegetables. The present study examined the combined effects of tobacco smoking and diet using a validated FFQ and serum carotenoid and tocopherol levels on cervical intraepithelial neoplasia grade 3 (CIN3) risk in a hospital-based case-control study conducted in Sao Paulo, Brazil, between 2003 and 2005. The sample comprised 231 incident, histologically confirmed cases of CIN3 and 453 controls. A low intake (<= 39 g) of dark-green and deep-yellow vegetables and fruits without tobacco smoking had a lesser effect on CIN3 (OR 1.14; 95% CI 0.49, 2.65) than among smokers with higher intake (>= 40 g; OR 1.83; 95% CI 0.73, 4.62) after adjusting for confounders. The OR for the joint exposure of tobacco smoking and low intake of vegetables and fruits was greater (3.86; 95% CI 1.74, 8.57; P for trend < 0.001) compared with non-smokers with higher intake after adjusting for confounding variables and human papillomavirus status. Similar results were observed for total fruit, serum total carotene (including beta-, alpha-and gamma-carotene) and tocopherols. These findings suggest that the effect of nutritional factors on CIN3 is modified by smoking.
Resumo:
To determine whether changes in dietary intakes predict weight loss, we studied 80 overweight adults who attended a nutritional counseling program during 6 months of follow-up at a primary health care center in Brazil. Habitual diet was assessed using a validated food frequency questionnaire at baseline and after 6 months. The mean age (+/-SD) of the participants was 46.5 +/- 9.5 years, and their mean body mass index was 29 +/- 3 kg/m(2) at baseline. After 6 months, the differences in body weight and fruit/vegetable intake were -1.4 +/- 3 kg and 109 +/- 320 g daily, respectively. Using multiple linear regression models adjusted for age, sex, changes in walking time, and total energy intake, the increased intake of dietary fiber from fruits/vegetables was associated with a greater weight loss (beta 1 [95% confidence interval (CI)] = -0.180 [-0.269, -0.0911) after 6 months of follow-up. Similar results were observed for increased intake of vegetables (beta 1 [95% CI] = -0.00497 [-0.008, -0.0021) and fruits (beta 1 [95% CI] = -0.00290 [-0.005, -0.001]) as predictors of weight loss. The increase of 100 g/d of vegetables and fruits represented a body weight loss of 500 and 300 g after 6 months, respectively (P <.05). Our findings support the relevance of increased intakes of fruits and vegetables that may help avoid weight gain in overweight adults. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To evaluate the impact of an educational and environmental intervention on the availability and consumption of fruits and vegetables in workplace cafeterias. Design: This was a randomized intervention study involving a sample of companies that were divided into intervention and control groups. The intervention, which focused on change in the work environment, was based on an ecological model for health promotion. It involved several different aspects including menu planning, food presentation and motivational strategies to encourage the consumption of fruits and vegetables. The impact of the intervention was measured by changes (between baseline and follow-up) in the availability of fruits and vegetables that were eaten per consumer in meals and the consumption of fruits and vegetables in the workplace by workers. We also evaluated the availability of energy, macronutrients and fibre. Settings: Companies of Sao Paulo, Brazil. Subjects: Twenty-nine companies and 2510 workers. Results: After the intervention we found an average increase in the availability of fruits and vegetables of 49 g in the intervention group, an increase of approximately 15 %, whereas the results for the control group remained practically equal to baseline levels. During the follow-up period, the intervention group also showed reduced total fat and an increase in fibre in the meals offered. The results showed a slight but still positive increase in the workers` consumption of fruits and vegetables (about 11 g) in the meals offered by the companies. Conclusions: Interventions focused on the work environment can be effective in promoting the consumption of healthy foods.
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.