36 resultados para Conus-venom Peptides

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pyroglutamyl proline-rich oligopeptides, present in the venom of the pit viper Bothrops jararaca (Bj-PROs), are the first described naturally occurring inhibitors of the angiotensin I-converting enzyme (ACE). The inhibition of ACE by the decapeptide Bj-PRO-10c (peptides in mammals resulting in a decrease of blood pressure. Recent studies, however, suggest that ACE inhibition alone is not sufficient for explaining the antihypertensive actions exerted by these peptides. In this study, we show that intracerebroventricular injection of Bj-PRO-10c induced a significant reduction of mean arterial pressure (MAP) together with a decrease of heart rate (HR) in spontaneously hypertensive rats, indicating that Bj-PRO-10c may act on the central nervous system. In agreement with its supposed neuronal action, this peptide dose-dependently evoked elevations of intracellular calcium concentration ([Ca(2+)](i)) in primary culture from postnatal rat brain. The N-terminal sequence of the peptide was not essential for induction of calcium fluxes, while any changes of C-terminal Pro or Ile residues affected Bj-PRO-10c`s activity. Using calcium imaging by confocal microscopy and fluorescence imaging plate reader analysis, we have characterized Bj-PRO-10c-induced [Ca(2+)](i) transients in rat brain cells as being independent from bradykinin-mediated effects and ACE inhibition. Bj-PRO-10c induced pertussis toxin-sensitive G(i/o)-protein activity mediated through a yet unknown receptor, influx and liberation of calcium from intracellular stores, as well as reduction of intracellular cAMP levels. Bj-PRO-10c promoted glutamate and GABA release that may be responsible for its antihypertensive activity and its effect on HR. (C) 2010 International Society for Advancement of Cytometry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, tip to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (similar to 3200 amu). A further three molecules (similar to similar to 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium channel toxins from sea anemones are employed as tools for dissecting the biophysical properties of inactivation in voltage-gated sodium channels. Cangitoxin (CGTX) is a peptide containing 48 amino acid residues and was formerly purified from Bunodosoma cangicum. Nevertheless, previous works reporting, the isolation procedures for such peptide from B. cangicum secretions are controversial and may lead to incorrect information. In this paper, we report a simple and rapid procedure, consisting of two chromatographic steps, in order to obtain a CGTX analog directly from sea anemone venom. We also report a substitution of N16D in this peptide sample and the co-elution of an inseparable minor isoform presenting the R14H substitution. Peptides are named as CGTX-II and CGTX-III, and their effects over Nav1.1 channels in patch clamp experiments are demonstrated. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate-capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin-potentiating peptides (BPP), < ENWPHPQIPP (Xc), < EGGWPRPGPEIPP (XIIIa) and < EARPPHPPIPP (XIe) (where < E is a pyroglutamyl residue). In addition, we identified a novel BPP peptide containing additional AP amino acids in the C-terminus (< EARPPHPPIPPAP); this novel peptide was named BPP-AP. Next, dermal and muscle microcirculations were visualized using intravital microscopy to establish the roles of peptides BPP-XIe and BPP-AP in this process. After local administration of peptide BPP-XIe (0.5 mu g.mu L-1), leukocyte rolling flux and adhesion were increased by fivefold in post-capillary venules, without any increments in vasodilatation of arterioles compared to control experiments. In contrast, local administration of BPP-AP (0.5 mu g.mu L-1) potently induced vasodilatation of arterioles (nearly 100% increase compared with the vehicle saline control), with only a small increase in leukocyte rolling flux. Therefore, the novel BPP-AP described herein has pharmacological advantages compared to the BPP-XIe. The present study further suggests that inactive oligopeptidase EP24.15 is a useful tool for the isolation of bioactive peptides from crude biological samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new acylamino acid, bunodosine 391 (BDS 391), was isolated from the venom of the sea anemone Bunodosoma cangicum. The structure was elucidated by spectroscopic analyses (2D NMR, ESIMS/MS) and verified by its synthesis. Intraplantar injection of BDS 391 into the hind paw of a rat induced a potent analgesic effect. This effect was not altered by naloxone (an opioid receptor antagonist), but was completely reversed by methysergide (a serotonin receptor antagonist), indicating that the effect is mediated by activation of serotonin receptors:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely. E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na(+)/K(+)-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na(+)/K(+)-ATPase expression and activity in rats injected with Bothrops alternatus snake venom. Methods: Male Wistar rats were injected with venom (0.8 mg/kg, iv.) and renal function was assessed 6.24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na(+)/K(+)-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively. Results: Venom caused lobulation of the capillary tufts, dilation of Bowman`s capsular space. F-actin disruption in Bowman`s capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na(+)/K(+)-ATPase alpha(1) subunit were increased 6 h post-venom, whereas Na(+)/K(+)-ATPase activity increased 6 h and 24 h post-venom. Conclusions: Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na(+)/K(+)-ATPase expression and activity in the early phase of renal damage. General significance: Enhanced Na(+)/K(+)-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage. (C) 2011 Elsevier B.V. All rights reserved.