3 resultados para Controversies
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s. s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s. s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s. l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s. l. (Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution.
Resumo:
Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.
Resumo:
Herein, we report a new approach of an FePt nanoparticle formation mechanism studying the evolution of particle size and composition during the synthesis using the modified polyol process. One of the factors limiting their application in ultra-high-density magnetic storage media is the particle-to-particle composition, which affects the A1-to-L1(0) transformation as well as their magnetic properties. There are many controversies in the literature concerning the mechanism of the FePt formation, which seems to be the key to understanding the compositional chemical distribution. Our results convincingly show that, initially, Pt nuclei are formed due to reduction of Pt(acac)(2) by the diol, followed by heterocoagulation of Fe cluster species formed from Fe(acac)(3) thermal decomposition onto the Pt nuclei. Complete reduction of heterocoagulated iron species seems to involve a CO-spillover process, in which the Pt nuclei surface acts as a heterogeneous catalyst, leading to the improvement of the single-particle composition control and allowing a much narrower compositional distribution. Our results show significant decreases in the particle-to-particle composition range, improving the A1-to-L1(0) phase transformation and, consequently, the magnetic properties when compared with other reported methods.