78 resultados para Connectivity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide adequate multivariate measures of information flow between neural structures, modified expressions of partial directed coherence (PDC) and directed transfer function (DTF), two popular multivariate connectivity measures employed in neuroscience, are introduced and their formal relationship to mutual information rates are proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of functional magnetic resonance imaging (fMRI) in neuroscience studies has increased enormously in the last decade. Although primarily used to map brain regions activated by specific stimuli, many studies have shown that fMRI can also be useful in identifying interactions between brain regions (functional and effective connectivity). Despite the widespread use of fMRI as a research tool, clinical applications of brain connectivity as studied by fMRI are not well established. One possible explanation is the lack of normal pattern, and intersubject variability-two variables that are still largely uncharacterized in most patient populations of interest. In the current study, we combine the identification of functional connectivity networks extracted by using Spearman partial correlation with the use of a one-class support vector machine in order construct a normative database. An application of this approach is illustrated using an fMRI dataset of 43 healthy Subjects performing a visual working memory task. In addition, the relationships between the results obtained and behavioral data are explored. Hum Brain Mapp 30:1068-1076, 2009. (C) 2008 Wiley-Liss. Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods: We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results: There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F >= 9.8; p <= .05, corrected). Whole brain post hoc analyses (all t >= 4.2; p <= .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions: White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie. predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods: Thirty-one BD (type 1; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results: The BD versus HC showed significantly greater right amygdala-OFC FC (p <= .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions: In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC-FA relationships in BID and HC require further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BID), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BID, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (I)CM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bipolar disorder is frequently misdiagnosed as major depressive disorder, delaying appropriate treatment and worsening outcome for many bipolar individuals. Emotion dysregulation is a core feature of bipolar disorder. Measures of dysfunction in neural systems supporting emotion regulation might therefore help discriminate bipolar from major depressive disorder. Methods: Thirty-one depressed individuals-15 bipolar depressed (BD) and 16 major depressed (MDD), DSM-IV diagnostic criteria, ages 18-55 years, matched for age, age of illness onset, illness duration, and depression severity-and 16 age- and gender-matched healthy control subjects performed two event-related paradigms: labeling the emotional intensity of happy and sad faces, respectively. We employed dynamic causal modeling to examine significant among-group alterations in effective connectivity (EC) between right- and left-sided neural regions supporting emotion regulation: amygdala and orbitomedial prefrontal cortex (OMPFC). Results: During classification of happy faces, we found profound and asymmetrical differences in EC between the OMPFC and amygdala. Left-sided differences involved top-down connections and discriminated between depressed and control subjects. Furthermore, greater medication load was associated with an amelioration of this abnormal top-down EC. Conversely, on the right side the abnormality was in bottom-up EC that was specific to bipolar disorder. These effects replicated when we considered only female subjects. Conclusions: Abnormal, left-sided, top-down OMPFC-amygdala and right-sided, bottom-up, amygdala-OMPFC EC during happy labeling distinguish BD and MDD, suggesting different pathophysiological mechanisms associated with the two types of depression.