13 resultados para Computerized Axial Tomography
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective. To evaluate the periapical repair after root canal treatment in the teeth of dogs using CT and conventional radiography and to compare these findings with the gold standard microscopic evaluation. Study design. The animals were divided into three groups according to endodontic treatment performed: Group 1, single-visit endodontic treatment in teeth without apical periodontitis; Group 2, single-visit endodontic treatment in teeth with apical periodontitis; and Group 3, endodontic treatment in teeth with apical periodontitis using calcium hydroxide as a root canal dressing. Group 4 consisted of teeth with apical periodontitis not submitted to root canal treatment and Group 5 consisted of healthy teeth without periapical disease. Radiographic, tomographic, and microscopic evaluations were performed by blind examiners. At 180 days experimental time, CT and radiographic measurements of periapical disease were compared with the gold standard microscopic measurement using intraclass correlation coefficient. Intergroup comparisons considering different methods of periapical lesions measurement or different clinical protocols of root canal treatment were performed by Kruskal Wallis test followed by Dunn. Integrity of lamina dura, presence of radiolucent areas, and presence of root resorption were analyzed by Fisher`s exact test. Results. There was discontinuity of the lamina dura and CPD in all teeth from Groups 2, 3, and 4 evaluated by tomography and radiography 45 days after CPD induction. Radiographically, 180 days after root canal treatment, there was no periapical lesion in teeth from Groups 1 and 3, different from groups 2 and 4 (p < .05). The highest reduction in the CPD size was observed on Group 3 (p < .05). According to the tomographic results, there was decrease of the size of the CPD on Group 3 but not on Groups 2 or 4. However, in all groups the periapical lesions presented larger mesio-distal extension if compared with radiography, both 45 days after CPD induction and 180 days after root canal treatment. At 180 days, CT measurements were closely related to microscopic results (ICC = 0.95) differently from radiographic evaluation (ICC = 0.86). Conclusion. CT Scan evaluation of periapical repair following root canal treatment provided similar information than that obtained by microscopic analysis, whereas radiographic evaluation underestimated the size do periapical lesion. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108:796-805)
Resumo:
We report the use of optical coherence tomography (OCT) to detect and quantify demineralization process induced by S. mutans biofilm in third molars human teeth. Artificial lesions were induced by a S. mutans microbiological culture and the samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9, and 11days. The OCT system was implemented using a light source delivering an average power of 96 mu W in the sample arm, and spectral characteristics allowing 23 mu m of axial resolution. The images were produced with lateral scans step of 10 pan and analyzed individually. As a result of the evaluation of theses images, lesion depth was calculated as function of demineralization time. The depth of the lesion in the root dentine increased from 70 pm to 230,urn (corrected by the enamel refraction index, 1.62 @ 856 nm), depending of exposure time. The lesion depth in root dentine was correlated to demineralization time, showing that it follows a geometrical progression like a bacteria growth law. [GRAPHICS] Progression of lesion depth in root dentine as function of exposure time, showing that it follows a geometrical progression like a bacteria growth law(C) 2009 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Introduction: The aim of this study was to evaluate the accuracy of two imaging methods in diagnosing apical periodontitis (AP) using histopathological findings as a gold standard. Methods: The periapex of 83 treated or untreated roots of dogs` teeth was examined using periapical radiography (PR), cone-beam computed tomography (CBCT) scans, and histology. Sensitivity, specificity, predictive values, and accuracy of PR and CBCT diagnosis were calculated. Results: PR detected AP in 71% of roots, a CBCT scan detected AP in 84%, and AP was histologically diagnosed in 93% (p = 0.001). Overall, sensitivity was 0.77 and 0.91 for PR and CBCT, respectively. Specificity was 1 for both. Negative predictive value was 0.25 and 0.46 for PR and CBCT, respectively. Positive predictive value was 1 for both. Diagnostic accuracy (true positives + true negatives) was 0.78 and 0.92 for PR and CBCT (p = 0.028), respectively. Conclusion: A CBCT scan was more sensitive in detecting AP compared with PR, which was more likely to miss AP when it was still present. (J Endod 2009;35:1009-1012)
Resumo:
The purpose of this study was to compare the favorable outcome of root canal treatment determined by periapical radiographs (PRs) and cone beam computed tomography (CBCT) scans. Ninety-six roots of dogs` teeth were used to form four groups (n = 24). In group 1, root canal treatments were performed in healthy teeth. Root canals in groups 2 through 4 were infected until apical periodontitis (AP) was radiographically confirmed. Roots with AP were treated by one-visit therapy in group 2, by two-visit therapy in group 3, and left untreated in group 4. The radiolucent area in the PRs and the volume of CBCT-scanned periapical lesions were measured before and 6 months after the treatment. In groups 1, 2, and 3, a favorable outcome (lesions absent or reduced) was shown in 57 (79%) roots using PRs but only in 25 (35%) roots using CBCT scans (p = 0.0001). Unfavorable outcomes occurred more frequently after one-visit therapy than two-visit therapy when determined by CBCT scans (p = 0.023). (J Endod 2009; 35:723-726)
Resumo:
Objectives Little information is available on the molecular events that occur during graft incorporation over time. The calvarial bone (Cb) grafts have been reported to produce greater responses compared with other donor regions in maxillofacial reconstructions, but the scientific evidences for this are still lacking. The objectives of this study are (1) to study the morphological pattern of Cb onlay bone grafts and compare them with the biological events through immunohistochemical responses and (2) to establish the effects of perforations in maintaining the volume and bone density of the receptor bed. Material and methods Sixty New Zealand White rabbits were submitted to Cb onlay bone grafts on the mandible. In 30 rabbits, the receptor bed was perforated (perforated group), while for the remaining animals the bed was kept intact (non-perforated group). Six animals from each group were sacrificed at 5, 7, 10, 20 and 60 days after surgery. Histological sections from the grafted area were prepared for immunohistochemical and histological analyses. Immuno-labeling was found for proteins Osteoprotegerin (OPG), receptor activator of nuclear factor-kappa beta ligand (RANKL), alkaline phosphatase (ALP), osteopontin (OPN), vascular endothelial growth factor (VEGF), tartrate-resistant acid phosphatase (TRAP), Type I collagen (COL I) and osteocalcin (OC). The tomography examination [computerized tomography (CT) scan] was conducted just after surgery and at the sacrifice. Results The histological findings revealed that the perforations contributed to higher bone deposition during the initial stages at the graft-receptor bed interface, accelerating the graft incorporation process. The results of the CT scan showed lower resorption for the perforated group (P < 0.05), and both groups showed high bone density rates at 60 days. This set of evidences is corroborated by the immunohistochemical outcomes indicating that proteins associated with revascularization and osteogenesis (VEGF, OPN, TRAP and ALP) were found in higher levels in the perforated group. Conclusions These findings indicate that the bone volume of calvarial grafts is better maintained when the receptor bed is perforated, probably resulting from more effective graft revascularization and greater bone deposition. The process of bone resorption peaked between 20 and 60 days post-operatively in both groups although significantly less in the perforated group. To cite this article:Pedrosa Jr WF, Okamoto R, Faria PEP, Arnez MFM, Xavier SP, Salata LA. Immunohistochemical, tomographic and histological study on onlay bone grafts remodeling. Part II: calvarial bone.Clin. Oral Impl. Res. 20, 2009; 1254-1264.doi: 10.1111/j.1600-0501.2009.01747.x.
Resumo:
Immediate loading of dental implants shortens the treatment time and makes it possible to give the patient an esthetic appearance throughout the treatment period. Placement of dental implants requires precise planning that accounts for anatomic limitations and restorative goals. Diagnosis can be made with the assistance of computerized tomographic scanning, but transfer of planning to the surgical field is limited. Recently, novel CAD/CAM techniques such as stereolithographic rapid prototyping have been developed to build surgical guides in an attempt to improve precision of implant placement. The aim of this case report was to show a modified surgical template used throughout implant placement as an alternative to a conventional surgical guide.
Resumo:
We present models for the upper-mantle velocity structure beneath SE and Central Brazil using independent tomographic inversions of P- and S-wave relative arrival-time residuals (including core phases) from teleseismic earthquakes. The events were recorded by a total of 92 stations deployed through different projects, institutions and time periods during the years 1992-2004. Our results show correlations with the main tectonic structures and reveal new anomalies not yet observed in previous works. All interpretations are based on robust anomalies, which appear in the different inversions for P-and S-waves. The resolution is variable through our study volume and has been analyzed through different theoretical test inversions. High-velocity anomalies are observed in the western portion of the Sao Francisco Craton, supporting the hypothesis that this Craton was part of a major Neoproterozoic plate (San Franciscan Plate). Low-velocity anomalies beneath the Tocantins Province (mainly fold belts between the Amazon and Sao Francisco Cratons) are interpreted as due to lithospheric thinning, which is consistent with the good correlation between intraplate seismicity and low-velocity anomalies in this region. Our results show that the basement of the Parana Basin is formed by several blocks, separated by suture zones, according to model of Milani & Ramos. The slab of the Nazca Plate can be observed as a high-velocity anomaly beneath the Parana Basin, between the depths of 700 and 1200 km. Further, we confirm the low-velocity anomaly in the NE area of the Parana Basin which has been interpreted by VanDecar et al. as a fossil conduct of the Tristan da Cunha Plume related to the Parana flood basalt eruptions during the opening of the South Atlantic.
Resumo:
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector`s orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge.
Resumo:
We use QCD sum rules to study the possible existence of a D(s)(D) over bar* - D(s)*(D) over bar molecule with the quantum number J(PC) = 1(++). We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We obtain m(DsD*) = (3.96 +/- 0.10) GeVaround 100 MeV above the mass of the meson X(3872). The proposed state is a natural generalized state to the strangeness sector of the X(3872), which was also found to be consistent with a multiquark state from a previous QCD sum rule analysis.
Resumo:
In this work we evaluate the effectiveness of computed tomography images as a tool to determine magnetic nanoparticle biodistribution over biological tissues. For this purpose, tomography images for magnetic nanoparticles, composed of Fe(3)O(4), coated with 2,3-dimercaptosuccinic acid (DMSA), were generated at several material concentrations. The comparison of CT numbers, calculated from these images generated at clinical conditions, with typical CT numbers for biological tissues, shows that the detection of nanoparticle in most tissues is only possible for high material concentrations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.