114 resultados para Computer Science, Interdisciplinary Applications
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper demonstrates the oscillatory characteristics of electrical signals acquired from two ornamental plant types (Epipremnum pinnatum and Philodendron scandens - Family Araceae), using a noninvasive acquisition system. The electrical signal was recorded using Ag/AgCl superficial electrodes inside a Faraday cage. The presence of the oscillatory electric generator was shown using a classical power spectral density. The Lempel and Ziv complexity measurement showed that the plant signal was not noise despite its nonlinear behavior. The oscillatory characteristics of the signal were explained using a simulated electrical model that establishes that for a frequency range from 5 to 15 Hz, the oscillatory characteristic is higher than for other frequency ranges. All results show that non-invasive electrical plant signals can be acquired with improvement of signal-to-noise ratio using a Faraday cage, and a simple electrical model is able to explain the electrical signal being generated. (C) 2010 Elsevier B.V. All rights reserved.
Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes
Resumo:
Knowing the best 1D model of the crustal and upper mantle structure is useful not only for routine hypocenter determination, but also for linearized joint inversions of hypocenters and 3D crustal structure, where a good choice of the initial model can be very important. Here, we tested the combination of a simple GA inversion with the widely used HYPO71 program to find the best three-layer model (upper crust, lower crust, and upper mantle) by minimizing the overall P- and S-arrival residuals, using local and regional earthquakes in two areas of the Brazilian shield. Results from the Tocantins Province (Central Brazil) and the southern border of the Sao Francisco craton (SE Brazil) indicated an average crustal thickness of 38 and 43 km, respectively, consistent with previous estimates from receiver functions and seismic refraction lines. The GA + HYPO71 inversion produced correct Vp/Vs ratios (1.73 and 1.71, respectively), as expected from Wadati diagrams. Tests with synthetic data showed that the method is robust for the crustal thickness, Pn velocity, and Vp/Vs ratio when using events with distance up to about 400 km, despite the small number of events available (7 and 22, respectively). The velocities of the upper and lower crusts, however, are less well constrained. Interestingly, in the Tocantins Province, the GA + HYPO71 inversion showed a secondary solution (local minimum) for the average crustal thickness, besides the global minimum solution, which was caused by the existence of two distinct domains in the Central Brazil with very different crustal thicknesses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Vector field formulation based on the Poisson theorem allows an automatic determination of rock physical properties (magnetization to density ratio-MDR-and the magnetization inclination-MI) from combined processing of gravity and magnetic geophysical data. The basic assumptions (i.e., Poisson conditions) are: that gravity and magnetic fields share common sources, and that these sources have a uniform magnetization direction and MDR. In addition, the previously existing formulation was restricted to profile data, and assumed sufficiently elongated (2-D) sources. For sources that violate Poisson conditions or have a 3-D geometry, the apparent values of MDR and MI that are generated in this way have an unclear relationship to the actual properties in the subsurface. We present Fortran programs that estimate MDR and MI values for 3-D sources through processing of gridded gravity and magnetic data. Tests with simple geophysical models indicate that magnetization polarity can be successfully recovered by MDR-MI processing, even in cases where juxtaposed bodies cannot be clearly distinguished on the basis of anomaly data. These results may be useful in crustal studies, especially in mapping magnetization polarity from marine-based gravity and magnetic data. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Motivation: DNA assembly programs classically perform an all-against-all comparison of reads to identify overlaps, followed by a multiple sequence alignment and generation of a consensus sequence. If the aim is to assemble a particular segment, instead of a whole genome or transcriptome, a target-specific assembly is a more sensible approach. GenSeed is a Perl program that implements a seed-driven recursive assembly consisting of cycles comprising a similarity search, read selection and assembly. The iterative process results in a progressive extension of the original seed sequence. GenSeed was tested and validated on many applications, including the reconstruction of nuclear genes or segments, full-length transcripts, and extrachromosomal genomes. The robustness of the method was confirmed through the use of a variety of DNA and protein seeds, including short sequences derived from SAGE and proteome projects.
Resumo:
One of the top ten most influential data mining algorithms, k-means, is known for being simple and scalable. However, it is sensitive to initialization of prototypes and requires that the number of clusters be specified in advance. This paper shows that evolutionary techniques conceived to guide the application of k-means can be more computationally efficient than systematic (i.e., repetitive) approaches that try to get around the above-mentioned drawbacks by repeatedly running the algorithm from different configurations for the number of clusters and initial positions of prototypes. To do so, a modified version of a (k-means based) fast evolutionary algorithm for clustering is employed. Theoretical complexity analyses for the systematic and evolutionary algorithms under interest are provided. Computational experiments and statistical analyses of the results are presented for artificial and text mining data sets. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Promoting the inclusion of students with disabilities in e-learning systems has brought many challenges for researchers and educators. The use of synchronous communication tools such as interactive whiteboards has been regarded as an obstacle for inclusive education. In this paper, we present the proposal of an inclusive approach to provide blind students with the possibility to participate in live learning sessions with whiteboard software. The approach is based on the provision of accessible textual descriptions by a live mediator. With the accessible descriptions, students are able to navigate through the elements and explore the content of the class using screen readers. The method used for this study consisted of the implementation of a software prototype within a virtual learning environment and a case study with the participation of a blind student in a live distance class. The results from the case study have shown that this approach can be very effective, and may be a starting point to provide blind students with resources they had previously been deprived from. The proof of concept implemented has shown that many further possibilities may be explored to enhance the interaction of blind users with educational content in whiteboards, and further pedagogical approaches can be investigated from this proposal. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Due to idiosyncrasies in their syntax, semantics or frequency, Multiword Expressions (MWEs) have received special attention from the NLP community, as the methods and techniques developed for the treatment of simplex words are not necessarily suitable for them. This is certainly the case for the automatic acquisition of MWEs from corpora. A lot of effort has been directed to the task of automatically identifying them, with considerable success. In this paper, we propose an approach for the identification of MWEs in a multilingual context, as a by-product of a word alignment process, that not only deals with the identification of possible MWE candidates, but also associates some multiword expressions with semantics. The results obtained indicate the feasibility and low costs in terms of tools and resources demanded by this approach, which could, for example, facilitate and speed up lexicographic work.
Resumo:
Existence of positive solutions for a fourth order equation with nonlinear boundary conditions, which models deformations of beams on elastic supports, is considered using fixed points theorems in cones of ordered Banach spaces. Iterative and numerical solutions are also considered. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we formulate a flexible density function from the selection mechanism viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006)) which possesses nice biological and physical interpretations. The new density function contains as special cases many models that have been proposed recently in the literature. In constructing this model, we assume that the number of competing causes of the event of interest has a general discrete distribution characterized by its probability generating function. This function has an important role in the selection procedure as well as in computing the conditional personal cure rate. Finally, we illustrate how various models can be deduced as special cases of the proposed model. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the level set function on general structured grids. The proposed algorithm is adapted from a recent finite element-based method and preserves the mass by means of a localized mass correction. A salient feature of the scheme is the absence of adjustable parameters. The algorithm is tested in two and three spatial dimensions and compared with the widely used partial differential equation (PDE)-based redistancing method using structured Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show that the overall performance of the proposed geometric procedure is better than PDE-based reinitialization schemes, since it is more robust with comparable accuracy. We also show that the algorithm is well-suited for the highly stretched curvilinear grids used in CFD simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
Resumo:
This work presents a numerical method suitable for the study of the development of internal boundary layers (IBL) and their characteristics for flows over various types of coastal cliffs. The IBL is an important meteorological occurrence for flows with surface roughness and topographical step changes. A two-dimensional flow program was used for this study. The governing equations were written using the vorticity-velocity formulation. The spatial derivatives were discretized by high-order compact finite differences schemes. The time integration was performed with a low storage fourth-order Runge-Kutta scheme. The coastal cliff (step) was specified through an immersed boundary method. The validation of the code was done by comparison of the results with experimental and observational data. The numerical simulations were carried out for different coastal cliff heights and inclinations. The results show that the predominant factors for the height of the IBL and its characteristics are the upstream velocity, and the height and form (inclination) of the coastal cliff. Copyright (C) 2010 John Wiley & Sons, Ltd.