4 resultados para Complex adaptive systems

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different components of complex integrated systems may be specialized for different functions, and thus the selective pressures acting on the system as a whole may be conflicting and can ultimately constrain organismal performance and evolution. The vertebrate cranial system is one of the most striking examples of a complex system with several possible functions, being associated to activities as different as locomotion, prey capture, display and defensive behaviours. Therefore, selective pressures on the cranial system as a whole are possibly complex and may be conflicting. The present study focuses on the influence of potentially conflicting selective pressures (diet vs. locomotion) on the evolution of head shape in Tropidurinae lizards. For example, the expected adaptations leading to flat heads and bodies in species living on vertical structures may conflict with the need for improved bite performance associated with the inclusion of hard or tough prey into the diet, a common phenomenon in Tropidurinae lizards. Body size and six variables describing head shape were quantified in preserved specimens of 23 species, and information on diet and substrate usage was obtained from the literature. No phylogenetic signal was observed in the morphological data at any branch length tested, suggesting adaptive evolution of head shape in Tropidurinae. This pattern was confirmed by both factor analysis and independent contrast analysis, which suggested adaptive co-variation between the head shape and the inclusion of hard prey into the diet. In contrast to our expectations, habitat use did not constrain or drive head shape evolution in the group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein-protein interaction networks were investigated in terms of outward accessibility, which quantifies the effectiveness of each protein in accessing other proteins and is related to the internality of nodes. By comparing the accessibility between 144 ortholog proteins in yeast and the fruit fly, we found that the accessibility tends to be higher among proteins in the fly than in yeast. In addition, z-scores of the accessibility calculated for different species revealed that the protein networks of less evolved species tend to be more random than those of more evolved species. The accessibility was also used to identify the border of the yeast protein interaction network, which was found to be mainly composed of viable proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tourism destination networks are amongst the most complex dynamical systems, involving a myriad of human-made and natural resources. In this work we report a complex network-based systematic analysis of the Elba (Italy) tourism destination network, including the characterization of its structure in terms of several traditional measurements, the investigation of its modularity, as well as its comprehensive study in terms of the recently reported superedges approach. In particular, structural (the number of paths of distinct lengths between pairs of nodes, as well as the number of reachable companies) and dynamical features (transition probabilities and the inward/outward activations and accessibilities) are measured and analyzed, leading to a series of important findings related to the interactions between tourism companies. Among the several reported results, it is shown that the type and size of the Companies influence strongly their respective activations and accessibilities, while their geographical position does not seem to matter. It is also shown that the Elba tourism network is largely fragmented and heterogeneous, so that it could benefit from increased integration. (C) 2009 Elsevier B.V. All rights reserved.