11 resultados para Complex Processes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early Cretaceous (similar to 129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel. Salamanca and Minas areas They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ((143)Nd/(144)Nd((129)) = 0.51178-0.51209, (87)Sr/(86)Sr((129)) = 0.70840-0.72417) characterize these rocks Geochemistry allows to distiniguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplace on the much older (Archean) Nico Perez teriane or on the boundary between the Dom Feliciano and Nico Perez termites) These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanea and Minas rocks genesis, a stronger contribution from lower crust is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years nitric oxide (NO) not only has appeared as an important endogenous signaling molecule in plants and as a mediator in many developmental and physiological processes, but has also received recognition as a plant hormone. The impressive recent achievements in elucidating the role of NO in plants have come about by the application of NO donors. The aim herein was to study the effects of the different NO donors, sodium nitroprusside (SNP) and the nitrosyl ethylenediaminetetraacetate ruthenium(II) ([Ru(NO)(Hedta)]) complex on cellular growth in embryogenic suspension cultures of Araucaria angustifolia. Appraisal of our data revealed that [Ru(NO)(Hedta)] stimulated about 60% of cellular growth in embryogenic suspension cultures of A. angustifolia, with results similar to those observed with the SNP donor. Nevertheless, application of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) inhibited this cellular growth in both. Cellular growth was correlated with an increase in endogenous NO levels after 21 days of culture, especially in treatments with NO donors. Our results demonstrated that the [Ru(NO)Hedta] complex could possibly be used as a NO donor in plants. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks exist in many areas of science such as biology, neuroscience, engineering, and sociology. The growing development of this area has led to the introduction of several topological and dynamical measurements, which describe and quantify the structure of networks. Such characterization is essential not only for the modeling of real systems but also for the study of dynamic processes that may take place in them. However, it is not easy to use several measurements for the analysis of complex networks, due to the correlation between them and the difficulty of their visualization. To overcome these limitations, we propose an effective and comprehensive approach for the analysis of complex networks, which allows the visualization of several measurements in a few projections that contain the largest data variance and the classification of networks into three levels of detail, vertices, communities, and the global topology. We also demonstrate the efficiency and the universality of the proposed methods in a series of real-world networks in the three levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic fabric and rock magnetism studies were performed on apparently isotropic granite facies from the main intrusion of the Lavras do Sul Intrusive Complex pluton (LSIC, Rio Grande do Sul, South Brazil). This intrusion is roughly circular (similar to 12 x 13.5 km), composed of alkali-calcic and alkaline granitoids, with the latter occupying the margin of the pluton. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the granites. Several rock-magnetism experiments performed in one specimen from each sampled site show that for all sites the magnetic susceptibility is dominantly carried by ferromagnetic minerals, while mainly magnetite carries the magnetic fabrics. Lineations and foliations in the granite facies were successful determined by applying magnetic methods. Magnetic lineations are gently plunging and roughly parallel to the boundaries of the pluton facies, except at the few sites in the central facies which have a radial orientation pattern. In contrast, the magnetic foliations tend to follow the contacts between the different granite facies. They are gently outerward-dipping inside the pluton, and become either steeply southwesterly dipping or vertical towards its margin. The lack of solid-state and subsolidus deformations at outcrop scale and in thin sections precludes deformation after full crystallization of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of processes reflecting magma flow. The foliation pattern displays a dome-shaped form for the main LSIC-pluton. However, the alkaline granites which outcrop in the southern part of the studied area have an inward-dipping foliation, and the steeply plunging magnetic lineation suggests that this area could be part of a feeder zone. The magma ascent probably occurred due to ring-diking. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite-steacyite group was found in evolved peralkaline granites from the Morro Redondo Complex, south Brazil. It occurs with quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO(2), Na(2)O and K(2)O contents of 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE(2)O(3) abundances (5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite-steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluids carrying Ca, the circulation of which was enhanced by deformational events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Pora Arch, a NE-trending structural feature, and has the Cerro Sarambi and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazu and the small bodies of Cerro Apua, Arroyo Gasory, Cerro Jhu, Cerro Tayay, and Cerro Teyu. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO(2) concentration for the Cerro Sarambi rocks show positive correlations for Al(2)O(3), K(2)O, and Rb, and negative ones for TiO(2), MgO, Fe(2)O(3), CaO, P(2)O(5), and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have T(DM) model ages that vary from 1.6 to 1.1 Ga. suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambi rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dating granulites has always been of great interest because they represent one of the most extreme settings of an orogen. Owing to the resilience of zircon, even in such severe environments, the link between P-T conditions and geological time is possible. However, a challenge to geochronologists is to define whether the growth of new zircon is related to pre- or post-P-T peak conditions and which processes might affect the (re) crystallization. In this context, the Anapolis-Itaucu Complex, a high-grade complex in central Brazil with ultrahigh temperature (UHT) granulites, may provide valuable information within this topic. The Anapolis-Itaucu Complex (AIC) includes ortho- and paragranulites, locally presenting UHT mineral assemblages, with igneous zircon ages varying between 760 and 650 Ma and metamorphic overgrowths dated at around 650-640 Ma. Also common in the Anapolis-Itaucu Complex are layered mafic-ultramafic complexes metamorphosed under high-grade conditions. This article presents the first geological and geochronological constraints of three of these layered complexes within the AIC, the Damolandia, Taquaral and Goianira-Trindade complexes. U-Pb (LA-MC-ICPMS, SHRIMP and ID-TIMS) zircon analyses reveal a spread of concordant ages spanning within an age interval of similar to 80 Ma with an ""upper"" intercept age of similar to 670 Ma. Under cathodoluminescence imaging, these crystals show partially preserved primary sector zoning, as well as internal textures typical of alteration during high-grade metamorphism, such as inward-moving boundaries. Zircon grains reveal homogeneous initial (176)Hf/(177)Hf values in distinct crystal-scale domains in all samples. Moreover. Hf isotopic ratios show correlation neither with U-Pb ages nor with Th/U ratios, suggesting that zircon grains crystallized during a single growth event. It is suggested, therefore, that the observed spread of concordant U-Pb ages may be related to a memory effect due to coupled dissolution-reprecipitation process during high grade metamorphism. Therefore, understanding the emplacement and metamorphism of this voluminous mafic magmatism is crucial as it may represent an additional heat source for the development of the ultrahigh temperature paragenesis recorded in the paragranulites. (C) 2010 Elsevier B.V. All rights reserved.