6 resultados para Columna vertebral
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The prevalence and risk factors of radiographic vertebral fracture were determined among Brazilian community-dwelling elderly. Vertebral fractures were a common condition in this elderly population, and lower hip bone mineral density was a significant risk factor for vertebral fractures in both genders. The aim of the study was to estimate the prevalence of radiographic vertebral fracture and investigate factors associated with this condition in Brazilian community-dwelling elderly. This cross-sectional study included 943 elderly subjects (561 women and 382 men) living in So Paulo, Brazil. Thoracic and lumbar spine radiographs were obtained, and vertebral fractures were evaluated using Genant`s semiquantitative method. Bone mineral density (BMD) was measured by dual X-ray absorptiometry, and bone biochemical markers were also evaluated. Female and male subjects were analyzed independently, and each gender was divided into two groups based on whether vertebral fractures were present. The prevalence of vertebral fracture was 27.5% (95% CI 23.8-31.1) in women and 31.8% in men (95% CI 27.1-36.5) (P = 0.116). Cox regression analyses using variables that were significant in the univariate analysis showed that age (prevalence ratio = 1.03, 95% CI 1.01-1.06; p = 0.019) and total femur BMD (PR = 0.27, 95% CI 0.08-0.98; p = 0.048) were independent factors in predicting vertebral fracture for the female group. In the male group, Cox regression analyses demonstrated that femoral neck BMD (PR = 0.26, 95% CI 0.07-0.98; p = 0.046) was an independent parameter in predicting vertebral fractures. Our results suggest that radiographic vertebral fractures are common in Brazilian community-dwelling elderly and that a low hip BMD was an important risk factor for this condition in both genders. Age was also significantly correlated with the presence of vertebral fractures in women.
Resumo:
Oculoauriculovertebral spectrum (OAVS; OMIM 164210) is a complex condition characterized by defects of aural, oral, mandibular and vertebral development. The aetiology of this condition is likely to be heterogeneous; most cases are sporadic, however, familial cases suggesting autosomal recessive end autosomal dominant inheritance have been reported. In this study, we describe the clinical aspects of nine familial cases with evidence of autosomal dominant inheritance and compare them with reports in the literature. Interfamilial and intrafamilial clinical variabilities were observed in this study (reinforcing the necessity of careful examination of familial members). We suggest that oculoauriculovertebral spectrum with autosomal dominant inheritance is characterized mainly by bilateral auricular involvement and rarely presents extracranial anomalies. Clin Dysmorphol 18:67-77 (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Auriculo-condylar syndrome (ACS), an autosomal dominant disorder of first and second pharyngeal arches, is characterized by malformed ears (`question mark ears`), prominent cheeks, microstomia, abnormal temporomandibular joint, and mandibular condyle hypoplasia. Penetrance seems to be complete, but there is high inter-and intra-familial phenotypic variation, with no evidence of genetic heterogeneity. We herein describe a new multigeneration family with 11 affected individuals (F1), in whom we confirm intra-familial clinical variability. Facial asymmetry, a clinical feature not highlighted in other ACS reports, was highly prevalent among the patients reported here. The gene responsible for ACS is still unknown and its identification will certainly contribute to the understanding of human craniofacial development. No chromosomal rearrangements have been associated with ACS, thus mapping and positional cloning is the best approach to identify this disease gene. To map the ACS gene, we conducted linkage analysis in two large ACS families, F1 and F2 (F2; reported elsewhere). Through segregation analysis, we first excluded three known loci associated with disorders of first and second pharyngeal arches (Treacher Collins syndrome, oculo-auriculo-vertebral spectrum, and Townes-Brocks syndrome). Next, we performed a wide genome search and we observed evidence of linkage to 1p21.1-q23.3 in F2 (LOD max 3.01 at theta = 0). Interestingly, this locus was not linked to the phenotype segregating in F1. Therefore, our results led to the mapping of a first locus of ACS (ACS1) and also showed evidence for genetic heterogeneity, suggesting that there are at least two loci responsible for this phenotype.
Resumo:
A new species of Neotropical freshwater stingray, family Potamotrygonidae, is described from the Rio Nanay in the upper Rio Amazonas basin of Peru. Potamotrygon tigrina, n. sp., is easily distinguished from all congeners by its conspicuous dorsal disc coloration, composed of bright yellow to orange vermiculations strongly interwoven with a dark-brown to deep-black background. Additional features that in combination diagnose P. tigrina, n. sp., include the presence of a single angular cartilage, low and not closely grouped dorsal tail spines, and coloration of tail composed of relatively wide and alternating bands of creamy white and dark brown to black. Potamotrygon tigrina is closely related to Potamotrygon schroederi Fernandez-Yepez, 1958, which occurs in the Rio Negro (Brazil) and Rio Orinoco (Venezuela, Colombia). Both species are very similar in proportions and counts, and share features hypothesized to be derived within Potamotrygonidae, related to their specific angular cartilage morphology, distal tail color, dorsal tail-spine pattern, and ventral lateral-line system. To further substantiate the description of P. tigrina, n. sp., we provide a redescription of P. schroederi based on material from the Rio Negro (Brazil) and Rio Orinoco (Venezuela). Specimens from the two basins differ in number of vertebral centra and slightly in size and frequency of rosettes on dorsal disc, distinctions that presently do not warrant their specific separation. Potamotrygon tigrina is frequently commercialized in the international aquarium trade but virtually nothing is known of its biology or conservation status.
Resumo:
Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.
Resumo:
Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.