3 resultados para Cold Model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the Lambda-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
Resumo:
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time-resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the system`s long time behavior and the thermalization limit is analyzed. Copyright (C) EPLA, 2011