2 resultados para Coddling moth.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this study, the ovary morphology of newly emerged ant queens of Atta sexdens rubropilosa was studied in whole mount preparations by confocal microscopy. The ovaries are composed of approximately 40 ovarioles, showing non-synchronic oocyte maturation. The terminal filament with clusters of undifferentiated cells was found at the distal end of the ovarioles. Next to this region is the germarium, composed of several elongated cystocytes interconnected by cytoplasmic bridges. The nurse cells (23-28 cells) result from asymmetric mitosis. Cytoskeleton analysis showed F-actin concentrated at the muscle cells of the external tunica and in fusomes inside the ovarioles. Microtubules were concentrated around the nuclei of the nurse and follicular cells. In contrast, the oocytes and the external tunica showed faint staining for tubulin.
Resumo:
The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.