3 resultados para Cochlear implantation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Aim To evaluate the kinetics of the inflammatory tissue response to three root canal sealers using a physicochemical method for quantification of the enhanced vascular permeability and histopathological analysis. Methodology Twenty-eight male Wistar rats randomly assigned to four groups according to the evaluation periods (1, 3, 7 and 14 days) were used to assess the vascular permeability and histopathological reaction to RoekoSeal, AH Plus and Sealapex (new formulation) sealers, using saline and Chloropercha as negative and positive controls, respectively. Seven rats were sacrificed per period. The biocompatibility of the sealers was evaluated spectrophotometrically and histopathologically. Results At day 14, Sealapex produced significantly more inflammatory exudate than AH Plus and RoekoSeal (P < 0.05); however, there was no significant difference between AH Plus and RoekoSeal (P > 0.05). Sealapex (new formulation) was the most irritating sealer, producing severe inflammation with the presence of multinucleated giant cells. RoekoSeal was the most biocompatible sealer, producing the least amount of inflammatory exudate. Conclusions RoekoSeal root canal sealer was biocompatible when implanted in connective tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area. Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model. Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 x 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis. Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months - Ti (p = 0.000) and HA (p = 0.009) - and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter`s sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect`s marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites. Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]