3 resultados para CoRoT-7 planets

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for rocky exoplanets plays an important role in our quest for extra-terrestrial life. Here, we discuss the extreme physical properties possible for the first characterised rocky super-Earth, CoRoT-7b (R(pl) = 1.58 +/- 0.10 R(Earth), M(pl) = 6.9 +/- 1.2 M(Earth)). It is extremely close to its star (a = 0.0171 AU = 4.48 R(st)), with its spin and orbital rotation likely synchronised. The comparison of its location in the (M(pl), R(pl)) plane with the predictions of planetary models for different compositions points to an Earth-like composition, even if the error bars of the measured quantities and the partial degeneracy of the models prevent a definitive conclusion. The proximity to its star provides an additional constraint on the model. It implies a high extreme-UV flux and particle wind, and the corresponding efficient erosion of the planetary atmosphere especially for volatile species including water. Consequently, we make the working hypothesis that the planet is rocky with no volatiles in its atmosphere, and derive the physical properties that result. As a consequence, the atmosphere is made of rocky vapours with a very low pressure (P <= 1.5 Pa), no cloud can be sustained, and no thermalisation of the planet is expected. The dayside is very hot (2474 +/- 71 K at the sub-stellar point) while the nightside is very cold (50-75 K). The sub-stellar point is as hot as the tungsten filament of an incandescent bulb, resulting in the melting and distillation of silicate rocks and the formation of a lava ocean. These possible features of CoRoT-7b could be common to many small and hot planets, including the recently discovered Kepler-10b. They define a new class of objects that we propose to name ""Lava-ocean planets"". (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 x 0.09 R (Earth) (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 x 0.09 R (Earth) found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10(-5) and the very clear detection of the ""super-Earth"" CoRoT-7b at 3.5 x 10(-4) relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.