2 resultados para Closeness
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.
Resumo:
The logic of proofs (lp) was proposed as Gdels missed link between Intuitionistic and S4-proofs, but so far the tableau-based methods proposed for lp have not explored this closeness with S4 and contain rules whose analycity is not immediately evident. We study possible formulations of analytic tableau proof methods for lp that preserve the subformula property. Two sound and complete tableau decision methods of increasing degree of analycity are proposed, KELP and preKELP. The latter is particularly inspired on S4-proofs. The crucial role of proof constants in the structure of lp-proofs methods is analysed. In particular, a method for the abduction of proof constant specifications in strongly analytic preKELP proofs is presented; abduction heuristics and the complexity of the method are discussed.