14 resultados para Clinic of livestock species
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The DNA Checkerboard method enables the simultaneous identification of distinct microorganisms in a large number of samples and employs up to 45 whole genomic DNA probes to gram-negative and gram-positive bacterial species present in subgingival biofilms. Collectively, they account for 55%-60% of the bacteria in subgingival biofilms. In this study, we present the DNA Checkerboard hybridization as an alternative method for the detection and quantitation of Candida species in oral cavities. Our results reveal that DNA Checkerboard is sensitive enough and constitutes a powerful and appropriate method for detecting and quantifying Candida species found in the oral cavity.
Resumo:
Anopheles albertoi Unti and Anopheles arthuri Unti are revived from the synonymy with Anopheles strodei Root, and a distinct morphological form (designated in this study as Anopheles CP Form) from the Strodei Complex of Anopheles (Nyssorhynchus) is characterized. The male genitalia of An. arthuri and An. albertoi are described and illustrated for the first time. An. strodei, An. arthuri, and An. albertoi were first distinguished based on scanning electron microphotos of the eggs, and then each egg type was associated with diagnostic characters of the male genitalia. Identification of Anopheles CP Form was based on morphological characters of the male genitalia, characterized and illustrated in this study. Molecular phylogenetic analysis was most clear when an outgroup was not included, in which case using the nuclear white gene, or the white gene in combination with the mitochondrial cytochrome c oxidase subunit I (COI) gene, clearly separated these four taxa. When Anopheles quadrimaculatus Say and Anopheles stephensi Liston were included as an outgroup, combined white and COI data resolved An. strodei and An. albertoi, whereas An. arthuri was not well resolved. The single sequence of Anopheles CP Form was recovered well separated from other groups in all analyses.
Resumo:
Aeromonas are widely distributed in the aquatic environment, and are considered to be emerging organisms that can produce a series of virulence factors. The present study was carried out in a sanitary sewage stabilization pond treatment system, located in Lins, State of Sao Paulo, Brazil. Most probable number was applied for estimation of the genus Aeromonas. Colony isolation was carried out on blood agar ampicillin and confirmed by biochemical characterization. Aeromonas species were isolated in 72.4% of influent samples, and in 55.2 and 48.3% of effluent from anaerobic and facultative lagoons, respectively. Thirteen Aeromonas species were isolated, representing most of the recognized species of these organisms. Even though it was possible to observe a tendency of decrease, total elimination of these organisms from the studied system was not achieved. Understanding of the pathogenic organism`s dynamics in wastewater treatment systems with a reuse potential is especially important because of the risk it represents.
Resumo:
P>Nongeniculate Corallinaceae are poorly known in Brazil. In our endeavor to identify this group of seaweeds along the Brazilian coast we came across some specimens that fit well into the accepted circumscription of Litothamnion Heydrich. Within this genus they could be identified to what has been called L. superpositum Foslie. The specimens were represented by nongeniculate, free living specimens (rhodoliths); lumpy to fruticose growth-form, presenting flared epithallial cells in transversal section; multiporate tetrasporangial conceptacles, with roof protruding above or flush with the surrounding thallus surface; chambers 250-525 mu m in diameter and 150-230 mu m high, roof structured by filaments with 3-5 cells long; and pores in depression. Among the species described from the Brazilian coast, L. heteromorphum (Foslie) Foslie presented anatomical and reproductive characteristics similar to the referred species described from southern Africa and Australia. Therefore, we propose to consider L. heteromorphum as a heterotypic synonym of L. superpositum and extending its distribution to the Western Atlantic.
Resumo:
Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.
Resumo:
We describe Kochiana new genus to accommodate a small Brazilian theraphosine species described originally as Mygale brunnipes by Koch (1842), resulting in Kochiana brunnipes new combination. Recently, specimens were rediscovered in northeastern Brazilian Atlantic rainforest. A preliminary cladistic analysis using equal weights parsimony and implied weights, was carried out to examine its phylogenetic placement. Kochiana new genus was monophyletic in all trees regardless of weighting scheme or concavity used. There is preliminary evidence for Kochiana new genus monophyly and weak evidence for its placement as sister group of Plesiopelma. Kochiana new genus can be characterized by the presence of a hornshaped spermatheca in females and males with a palpal bulb having prolateral accessory keels and a well developed medial crest on the embolus apex.
Resumo:
This is a reply to Ortega-Baes` et al. (2010) survey of 25 Argentinean species of cacti evaluated for vivipary. We argue that the sample size and geographic area of the species investigated is insufficient to totally exclude the putative commonness of this condition in the Cactaceae. We indicate possible reasons why they did not find viviparous fruits in their survey. Failure to detect vivipary in cacti of NW Argentina may be correlated with limited taxonomic sampling and geographic region in addition to intrinsic and extrinsic plant factors, including different stages of fruit and seed development and genetic, ecological, and edaphic aspects, which, individually or in concert, control precocious germination. We uphold that viviparity is putatively frequent in this family and list 16 new cases for a total of 53 viviparous cacti, which make up ca. 4% incidence of viviparism in the Cactaceae, a substantially higher percentage than most angiosperm families exhibiting this condition. The Cactaceae ranks fourth in frequency of viviparity after the aquatic families of mangroves and seagrasses. We suggest the re-evaluation of cactus vivipary, primarily as a reproductive adaptation to changing environments and physiological stress with a secondary role as a reproductive strategy with limited offspring dispersal/survival and fitness advantages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.
Resumo:
Leptospirosis is a spirochetal zoonotic disease of global distribution with a high incidence in tropical regions. In the last 15 years it has been recognized as an important emerging infectious disease due to the occurrence of large outbreaks in warm-climate countries and, occasionally, in temperate regions. Pathogenic leptospires efficiently colonize target organs after penetrating the host. Their invasiveness is attributed to the ability to multiply in blood, adhere to host cells, and penetrate into tissues. Therefore, they must be able to evade the innate host defense. The main purpose of the present study was to evaluate how several Leptospira strains evade the protective function of the complement system. The serum resistance of six Leptospira strains was analyzed. We demonstrate that the pathogenic strain isolated from infected hamsters avoids serum bactericidal activity more efficiently than the culture-attenuated or the nonpathogenic Leptospira strains. Moreover, both the alternative and the classical pathways of complement seem to be responsible for the killing of leptospires. Serum-resistant and serum-intermediate strains are able to bind C4BP, whereas the serum-sensitive strain Patoc I is not. Surface-bound C4BP promotes factor I-mediated cleavage of C4b. Accordingly, we found that pathogenic strains displayed reduced deposition of the late complement components C5 to C9 upon exposure to serum. We conclude that binding of C4BP contributes to leptospiral serum resistance against host complement.
Resumo:
The correlation between the microdilution (MD), Etest (R) (ET), and disk diffusion (DD) methods was determined for amphotericin B, itraconazole and fluconazole. The minimal inhibitory concentration (MIC) of those antifungal agents was established for a total of 70 Candida spp. isolates from colonization and infection. The species distribution was: Candida albicans (n = 27), C. tropicalis (n = 17), C. glabrata (n = 16), C. parapsilosis (n = 8), and C. lusitaniae (n = 2). Non-Candida albicans Candida species showed higher MICs for the three antifungal agents when compared with C. albicans isolates. The overall concordance (based on the MIC value obtained within two dilutions) between the ET and the MD method was 83% for amphotericin B, 63% for itraconazole, and 64% for fluconazole. Considering the breakpoint, the agreement between the DD and MD methods was 71% for itraconazole and 67% for fluconazole. The DD zone diameters are highly reproducible and correlate well with the MD method, making agar-based methods a viable alternative to MD for susceptibility testing. However, data on agar-based tests for itraconazole and amphotericin B are yet scarce. Thus, further research must still be carded out to ensure the standardization to other antifungal agents. J. Clin. Lab. Anal. 23:324-330, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
This study is focused on the analysis of an accumulation of inorganic elements in muscles, liver and gonad of seven fish species from Sao Francisco River located in the Parana state of Brazil. Concentrations of the elements were determined using the SR-TXRF technique. In the muscles of fish species, negative length dependent relationships were observed for chromium and zinc ion absorption. The obtained results showed that accumulated Cr ions values are above the limits defined in the Brazilian legislative norm on food. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
Protein-protein interaction networks were investigated in terms of outward accessibility, which quantifies the effectiveness of each protein in accessing other proteins and is related to the internality of nodes. By comparing the accessibility between 144 ortholog proteins in yeast and the fruit fly, we found that the accessibility tends to be higher among proteins in the fly than in yeast. In addition, z-scores of the accessibility calculated for different species revealed that the protein networks of less evolved species tend to be more random than those of more evolved species. The accessibility was also used to identify the border of the yeast protein interaction network, which was found to be mainly composed of viable proteins.
Resumo:
Carbon dioxide electroreduction on copper electrode was studied by surface enhanced Raman scattering (SERS) in K(2)SO(4) aqueous solutions with different pH values. CO(2) was bubbled into the solution at 0 V vs. Ag/AgCl, i.e., on an oxidized copper surface. In acidic solutions (pH around 2.5), at -0.2 V, bands indicative of the presence of ethylene on the electrode surface were detected. Although ethylene is knowledgably a product of CO(2) electroreduction on copper, it was not experimentally identified on the electrode`s surface at such a low cathodic potential in prior works. In solutions with pH around 2.5, CO bands were not observed, suggesting that hydrocarbons could be formed by a pathway that does not occur via adsorbed CO. In solutions with higher pHs, a complex spectral pattern, between 800 and 1700 cm(-1), was observed at approximately -0.4 V. The observed spectrum closely resembles those reported in the literature for adsorption of monocarboxylic acids with small chains. The spectral features indicate the presence of a structure containing a double C=C bond. a carboxyl group, and C-H bonds on the electrode`s surface. SERS spectra obtained in CO-saturated solution are also presented. However, in this case, no SERS bands were observed in the region between 800 and 1700 cm(-1) at low cathodic potentials. (c) 2009 Elsevier B.V. All rights reserved.