3 resultados para Clarinet with orchestra, arranged
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Actinocephalus exhibits perhaps more diversity in habit than any other genus of Eriocaulaceae. This variation is largely a result of differences in the arrangement of the paraclades. Based on the analysis of stem architecture of all 25 species of Actinocephalus, the following patterns were established: (1) leaf rosette, with no elongated axis, instead the axillary paraclades originating directly from the short aerial stem, (2) rosette axis continuing into an elongated axis with spirally arranged paraclades, (3) an elongated axis originating from a rhizome, with ramified paraclades, and (4) an elongated axis originating from a short aerial stem, with paraclades arranged in a subwhorl. The elongated axis exhibits indeterminate growth only in pattern 4. Patterns 3 and 4 are found exclusively in Actinocephalus; pattern I occurs in many other genera of Eriocaulaceae, while pattern 2 is also found in Syngonanthus and Paepalanthus. Anatomically, each stem structure (i.e., paraclade, elongated axis, short aerial stem, rhizome) is thickened in a distinctive way and this can be used to distinguish them. Specifically, elongated axes and paraclades lack thickening, thickening of short aerial stems results from the primary thickening meristem and/or the secondary thickening meristem. Thickening of rhizomes results from the activity of the primary thickening meristem. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Vegetative and fertile shoots of a shrub-like seed plant from the late Aptian Crato Formation of Brazil are described as Cearania heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. Anatomical details of the axes, epidermal features and separate ovulate and pollen producing organs indicate the gymnospermous nature of this plant. The vascular tissue of the axes includes tracheids with bordered pits and fiber tracheids. Vegetative shoots comprising at least three branching orders bear opposite-decussately arranged ovate to lanceolate, dorsiventrally flattened, parallelodromous, rather thick leaves that vary tremendously in size. The amphistomatic leaves bear (brachy-)paracytic stomatal complexes arranged in simple longitudinal files. The ovulate structure is interpreted as a terminally attached single globular ovule/seed surrounded by at least five to six lanceolate bracts. A terminally attached pollen-cone like structure grows on a lateral leafy shoot. The unusual character combination may indicate that the fossils belong to a hitherto unknown group with affinities to ephedroid Gnetales. Sterile shoots formerly often described as Podozamites, Nageiopsis or Lilites that are at least partly congeneric with C. heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. had a wide geographic distribution during the Early Cretaceous. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
2,3-Dihydroxynaphthalene (H(2)dhn) reacts with [ReOCl(3)-(PPh(3))(2)] or [ReOBr(3)(PPh(3))(2)] in a 1:1 molar ratio with formation of the isostructural complexes [ReOCl(2)(PPh(3))(2)(Hdhn)] (4) and [ReOBr(2)-(PPh(3))(2)(Hdhn)] (5). They have distorted octahedral coordination spheres with the halide and the triphenylphosphine ligands arranged in equatorial trans positions to each other. The Hdhn-ligand coordinates monodentately in trans position to the oxo ligand. Intramolecular hydrogen bonds between the Hdhn and the halogeno ligands stabilize this coordination mode. The products represent the first examples of oxorhenium(V) complexes with monodentate catecholate-type ligands.