3 resultados para City Size

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates how the summer thunderstorms developed over the city of Sao Paulo and if the pollution might affect its development or characteristics during the austral summer (December-January-February-March, DJFM months). A total of 605 days from December 1999 to March 2004 was separated as 241 thunderstorms days (TDs) and 364 non-thunderstorm days (NTDs). The analyses are performed by using hourly measurements of air temperature (T), web-bulb temperature (Tw), surface atmospheric pressure (P), wind velocity and direction, rainfall and thunder and lightning observations collected at the Meteorological Station of the University of Sao Paulo in conjunction with aerosol measurements obtained by AERONET (Aerosol Robotic Network), and the NCEP-DOE (National Centers for Environmental Prediction Department of Energy) reanalysis and radiosondes. The wind diurnal cycle shows that for TDs the morning flow is from the northwest rotating to the southeast after 16: 00 local time (LT) and it remains from the east until the night. For the NTDs, the wind is well characterized by the sea-breeze circulation that in the morning has the wind blowing from the northeast and in the afternoon from the southeast. The TDs show that the air temperature diurnal cycle presents higher amplitude and the maximum temperature of the day is 3.2 degrees C higher than in NTDs. Another important factor found is the difference between moisture that is higher during TDs. In terms of precipitation, the TDs represent 40% of total of days analyzed and those days are responsible for more than 60% of the total rain accumulation during the summer, for instance 50% of the TDs had more than 15.5mm day(-1) while the NTDs had 4 mm day(-1). Moreover, the rainfall distribution shows that TDs have higher rainfall rate intensities and an afternoon precipitation maximum; while in the NTDs there isn`t a defined precipitation diurnal cycle. The wind and temperature fields from NCEP reanalysis concur with the local weather station and radiosonde observations. The NCEP composites show that TDs are controlled by synoptic circulation characterized by a pre-frontal situation, with a baroclinic zone situated at southern part of Sao Paulo. In terms of pollution, this study employed the AERONET data to obtain the main aerosol characteristics in the atmospheric column for both TDs and NTDs. The particle size distribution and particle volume size distribution have similar concentrations for both TDs and NTDs and present a similar fine and coarse mode mean radius. In respect to the atmospheric loading, the aerosol optical depth (AOD) at different frequencies presented closed mean values for both TDs and NTDs that were statistically significant at 95% level. The spectral dependency of those values in conjunction with the Angstrom parameter reveal the higher concentration of the fine mode particles that are more likely to be hygroscopic and from urban areas. In summary, no significant aerosol effect could be found on the development of summer thunderstorms, suggesting the strong synoptic control by the baroclinic forcing for deep convective development. (C) 2010 Published by Elsevier B. V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic fabric and rock magnetism studies were performed on 25 unmetamorphosed mafic dikes of the Meso-Late Proterozoic (similar to 1.02 Ga) dike swarm from Salvador (Bahia State, NE Brazil). This area lies in the north-eastern part of the Sao Francisco Craton, which was dominantly formed/reworked during the Transamazonian orogeny (2.14-1.94 Ga). The dikes crop out along the beaches and in quarries around Salvador city, and cut across both amphibolite dikes and granulites. Their widths range from a few centimeters up to 30 m with an average of similar to 4 m, and show two main trends N 140-190 and N 100-120 with vertical dips. Magnetic fabrics were determined using both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The magnetic mineralogy was investigated by many experiments including remanent magnetization measurements at variable low temperatures (10-300 K), Mossbauer spectroscopy, high temperature magnetization curves (25-700 degrees C) and scanning electron microscopy (SEM). The rock magnetism study suggests pseudo-single-domain magnetite grains carrying the bulk magnetic susceptibility and AARM fabrics. The magnetite grains found in these dikes are large and we discard the presence of single-domain grains. Its composition is close to stoichiometric with low Ti substitution, and its Verwey transition occurs around 120 K. The main AMS fabric recognized in the swarm is so-called normal, in which the K(max)-K(int) plane is parallel to the dike plane and the magnetic foliation pole K(min)) is perpendicular to it. This fabric is interpreted as due to magma flow, and analysis of the K m inclination permitted to infer that approximately 80% of the dikes were fed by horizontal or sub-horizontal flows (K(max) < 30 degrees). This interpretation is supported by structural field evidence found in five dikes. In addition, based on the plunge of K(max), two mantle sources could be inferred; one of them which fed about 80% of the swarm would be located in the southern part of the region, and the other underlied the Valeria quarry. However, for all dikes the AARM tensors are not coaxial with AMS fabrics and show a magnetic lineation (AARM(max)) oriented to N30-60E, suggesting that magnetite grains were rotated clockwise from dike plane. The orientation of AARM lineation is similar to the orientation of a system of faults in which the Salvador normal fault is the most important. These faults were formed during Cretaceous rifting in the Reconcavo-Tucano-jatoba assemblage that corresponds to an aborted intra-continental rift formed during the opening of the South Atlantic. Therefore, the AARM fabric found for the Salvador dikes is probably tectonic in origin and suggests that the dike swarm was affected by the important tectonic event responsible for the break-up of the Gondwanaland. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the surroundings of Caldas and El Retiro cities (Colombia) metamorphic rocks derived from basic and pelitic protoliths comprise the Caldas amphibole schist and the Ancon schist respectively. Subordinated metamorphosed granite bodies (La Miel gneiss) are associated to these units, and The El Retiro amphibolites, migmatites and granulites crops out eastwards of these units, separated by shear zones. The Caldas amphibole schist and the Ancon schist protoliths could have been formed in a distal marine reduced environment and amalgamated to the South American continent in an apparent Triassic subduction event. The El Retiro rocks are akin to a continental basement and possible include impure metasediments of continental margin, whose metamorphism originated granulite facies rocks and migmatites as a result of the anatexis of quartz-feldspathic rocks. The metamorphism was accompanied by intense deformation, which has juxtaposed both migmatites and granulite blocks. Afterward, heat and fluid circulation associated with the emplacement of minor igneous intrusions resulted in intense fluid-rock interaction, variations in the grain size of the minerals and, especially, intense retrograde metamorphic re-equilibrium. Thermobarometric estimations for the Caldas amphibole schist indicate metamorphism in the Barrovian amphibolite fades. The metamorphic path is counter-clockwise, but retrograde evolution could not be precisely defined. The pressures of the metamorphism in these rocks range from 6.3 to 13.5 kbar, with narrow temperature ranging from 550 to 630 degrees C. For the Ancon schist metapelites the P-T path is also counter-clockwise, with a temperature increase evidenced by the occurrence of sillimanite and the cooling by later kyanite. The progressive metamorphism event occurred at pressures of 7.6-7.2 kbar and temperatures of 645-635 degrees C for one sample and temperature between 500 and 600 degrees C under constant pressure of 6 kbar. The temperature estimated for these rocks varies between 400 and 555 degrees C at pressures of 5-6 kbar in the retrograde metamorphic path. The El Retiro rocks evidence strong decompression with narrow variation in temperature, showing pressure values between 8.7 and 2.7 kbar at temperatures of 740-633 degrees C. These metamorphic fragments of the basement in the Central Cordillera of the Colombian Andes could represent a close relationship with an antique subduction zone. (C) 2011 Elsevier Ltd. All rights reserved.