11 resultados para Choline

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphomositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies involving chitosan interacting with phospholipid monolayers that mimic cell membranes have brought molecular-level evidence for some of the physiological actions of chitosan, as in removing a protein from the membrane. This interaction has been proven to be primarily of electrostatic origin because of the positive charge OF chitosan in low pH solutions, but indirect evidence has also appeared of the presence of hydrophobic interactions. In this study, we provide definitive proof that model membranes are not affected merely by the charges in the amine groups of chitosan. Such a proof was obtained by comparing surface pressure and surface potential isotherms of dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG) monolayers incorporating either chitosan or poly(allylamine hydrochloride) (PAH). As the latter is also positively charged and With the same charged Functional group as chitosan, similar effects should be observed in case the electrical charge was the only relevant parameter. Instead, we observed a large expansion in the surface pressure isotherms upon interaction with chitosan, whereas PAH had much smaller effects. Of particular relevance for biological implications, chitosan considerably reduced the monolayer elasticity, whereas PAH had almost no effect. it is clear therefore that chitosan action depends strongly either on its functional uncharged groups and/or on its specific conformation in solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many chitosan biological activities depend on the interaction with biomembranes, but so far it has not been possible to obtain molecular-level evidence of chitosan action. In this article, we employ Langmuir phospholipid monolayers as cell membrane models and show that chitosan is able to remove beta-lactoglobulin (BLG) from negatively charged dimyristoyl phosphatidic acid (DMPA) and dipalmitoyl phosphatidyl glycerol (DPPG). This was shown with surface pressure isotherms and elasticity and PM-IRRAS measurements in the Langmuir monolayers, in addition to quartz crystal microbalance and fluorescence spectroscopy measurements for Langmuir-Blodgett (LB) films transferred onto solid substrates. Some specificity was noted in the removal action because chitosan was unable to remove BLG incorporated into neutral dipalmitoyl phosphatidyl choline (DPPC) and cholesterol monolayers and had no effect on horseradish peroxidase and urease interacting with DMPA. An obvious biological implication of these findings is to offer reasons that chitosan can remove BLG from lipophilic environments, as reported in the recent literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes have been applied to many fields as nanocarriers, especially in drug delivery as active molecules may be entrapped either in their aqueous interior or onto the hydrophobic surface. In this paper we describe the fabrication of layer-by-layer (LbL) films made with liposomes incorporating the anti-inflammatory ibuprofen. The liposomes were made with dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG) and palmitoyl oleoyl phosphatidyl glycerol (POPG). LbL films were assembled via alternate adsorption of the polyamidoamine dendrimer (PAMAM), generation 4, and liposomes containing ibuprofen. According to dynamic light scattering measurements, the incorporation of ibuprofen caused DPPC and DPPG liposonnes to become more stable, with a decrease in diameter from 140 to 74 nm and 132 to 63 nm, respectively. In contrast, liposomes from POPG became less stable, with an increase in size from 110 to 160 nm after ibuprofen incorporation. These results were confirmed by atomic force microscopy images of LbL films, which showed a large tendency to rupture for POPG liposomes. Film growth was monitored using nanogravimetry and UV-Vis spectroscopy, indicating that growth stops after 10 bilayers. The release of ibuprofen obtained with fluorescence measurements was slower for the liposomes, with decay times of 9.2 and 8.5 h for DPPG and POPG liposomes, respectively, than for the free drug with a decay time of 5.2 h. Ibuprofen could also be released from the LbL films made with DPPG and POPG liposomes, which is promising for further uses in patches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between cationic bilayer fragments and a model oligonucleotide was investigated by differential scanning calorimetry, turbidimetry, determination of excimer to monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidyl-choline in bilayer fragment dispersions and dynamic light scattering for sizing and zeta-potential analysis. Salt (Na(2)HPO(4)), mononucleotide (2`-deoxyadenosine-5`-monophosphate) or poly (dA) oligonucleotide (3`-AAA AAA AAA A-5`) affected structure and stability of dioctadecyldimethylammonium bromide bilayer fragments. Oligonucleotide and salt increased bilayer packing due to bilayer fragment fusion. Mononucleotide did not reduce colloid stability or did not cause bilayer fragment fusion. Charge neutralization of bilayer fragments by poly (dA) at 1:10 poly (dA):dioctadecyldimethylammonium bromide molar ratio caused extensive aggregation, maximal size and zero of zeta-potential for the assemblies. Above charge neutralization, assemblies recovered colloid stability due to charge overcompensation. For bilayer fragments/poly (dA), the nonmonotonic behavior of colloid stability as a function of poly (dA) concentration was unique for the oligonucleotide and was not observed for Na(2)HPO(4) or 2`-deoxyadenosine-5`-monophosphate. For the first time, such interactions between cationic bilayer fragments and mono- or oligonucleotide were described in the literature. Bilayer fragments/oligonucleotide assemblies may find interesting applications in drug delivery. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric alpha 7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca(2+) influx. However, the study of recombinant alpha 7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for alpha 3, alpha 5, alpha 7, beta 2 and beta 4 subunits was present during the course of differentiation, while mRNAs coding for alpha 2, alpha 4 and beta 3 subunits were not expressed in PC12 cells. alpha 7 subunit expression was highest following 1 day of induction to differentiation. Activity of alpha 7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the alpha 7 agonist choline. Increased alpha 7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.