7 resultados para Chinch-bugs.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma cruzi and Trypanosoma rangeli are human-infective blood parasites, largely restricted to Central and South America. They also infect a wide range of wild and domestic mammals and are transmitted by a numerous species of triatomine bugs. There are significant overlaps in the host and geographical ranges of both species. The two species consist of a number of distinct phylogenetic lineages. A range of PCR-based techniques have been developed to differentiate between these species and to assign their isolates into lineages. However, the existence of at least six and five lineages within T. cruzi and T. rangeli, respectively, makes identification of the full range of isolates difficult and time consuming. Here we have applied fluorescent fragment length barcoding (FFLB) to the problem of identifying and genotyping T. cruzi, T. rangeli and other South American trypanosomes. This technique discriminates species on the basis of length polymorphism of regions of the rDNA locus. FFLB was able to differentiate many trypanosome species known from South American mammals: T. cruzi cruzi. T. cruzi marinkellei, T. dionisii-like, T. evansi, T. lewisi, T. rangeli, T. theileri and T. vivax. Furthermore, all five T. rangeli lineages and many T. cruzi lineages could be identified, except the hybrid lineages TcV and TcVI that could not be distinguished from lineages III and II respectively. This method also allowed identification of mixed infections of T. cruzi and T. rangeli lineages in naturally infected triatomine bugs. The ability of FFLB to genotype multiple lineages of T. cruzi and T. rangeli together with other trypanosome species, using the same primer sets is an advantage over other currently available techniques. Overall, these results demonstrate that FFLB is a useful method for species diagnosis, genotyping and understanding the epidemiology of American trypanosomes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 72 Trypanosoma cruzi isolates from different hosts and geographical regions of western Venezuela, where Chagas disease is endemic, were typed using ribosomal and mini-exon gene markers. The isolates were obtained from wild, peridomestic and domestic sources including triatomine-bugs, human acute chagasic patients and other mammals. Results showed that T. cruzi two major phylogenetic lineages, T. cruzi I and T. cruzi II were present. However, a remarkable predominance of T. cruzi I (96%) over T. cruzi II (4%) was observed. The present results suggest that in western Venezuela circulation of both T. cruzi I and T. cruzi II isolates is independent from the source of isolation and the geographical area where they occur, with predominance of T. cruzi I. The epidemiological significance of the present results is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, Were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TO-tat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded loss parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype wall found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we provide phylogenetic and biogeographic evidence that the Trypanosomo cruzi lineages T. cruzi I (TCI) and T. cruzi IIa (TCIIa) circulate amongst non-human primates in Brazilian Amazonia, and are transmitted by Rhodnius species in overlapping arboreal transmission cycles, sporadically infecting humans. TO presented higher prevalence rates, and no lineages other than TCI and TCIIa were found in this study in wild monkeys and Rhodnius from the Amazonian region. We characterised TO and TCIIa from wild primates (16 TO and five TCIIa), Rhodnius spp, (13 TCI and nine TCIIa), and humans with Chagas disease associated with oral transmission (14 TO and five TCIIa) in Brazilian Amazonia. To our knowledge, TCIIa had not been associated with wild monkeys until now. Polymorphisms of ssrDNA, cytochrome b gene sequences and randomly amplified polymorphic DNA (RAPD) patterns clearly separated TCIIa from TCIIb-e and TCI lineages, and disclosed small intra-lineage polymorphisms amongst isolates from Amazonia. These data are important in understanding the complexity of the transmission cycles, genetic structure, and evolutionary history of T cruzi populations circulating in Amazonia, and they contribute to both the unravelling of human infection routes and the pathological peculiarities of Chagas disease in this region. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma rangeli infects several mammalian orders but has never confidently been described in Chiroptera, which are commonly parasitized by many trypanosome species. Here, we described trypanosomes from bats captured in Central Brazil identified as T rangeli,.T. dionisii, T cruzimarinkellei and T cruzi. Two isolates, Tra643 from Platyrrhinus lineatus and Tra1719 from Artibeus plamirostris were identified as T rangeli by morphological, biological and molecular methods, and confirmed by phylogenetic analyses. Analysis using SSU rDNA sequences clustered these bat trypanosomes together with T rangeli from other hosts, and separated them from other trypanosomes from bats. Genotyping based on length and sequence polymorphism of PCR-amplified intergenic spliced-leader gene sequences assigned Tra1719 to the lineage A whereas Tra643 was shown to be a new genotype and was assigned to the new lineage E. To our knowledge, these two isolates are the earliest T rangeli from bats and the first isolates from Central Brazil molecularly characterized. Rhodnius stali captured for this study was found infected by T rangeli and T cruzi. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.