8 resultados para Chemical-extraction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dibromotyrosine-derived metabolites are of common occurrence within marine sponges belonging to the order Verongida. However, previous chemical analysis of crude extracts obtained from samples of the verongid sponge Aplysina fulva collected in Brazil did not provide any dibromotyrosine-derived compounds. In this investigation, five samples of A. fulva from five different locations along the Brazilian coastline and one sample from a temperate reef in the South Atlantic Bight (SAB) (Georgia, USA) were investigated for the presence of bromotyrosine-derived compounds. All six samples collected yielded dibromotyrosine-derived compounds, including a new derivative, named aplysinafulvin, which has been identified by. analysis of spectroscopic data. These results confirm previous assumptions that dibromotyrosine-derived metabolites can be considered as chemotaxonomic markers of verongid sponges. The isolation of aplysinafulvin provides additional support for a biogenetic pathway involving an arene oxide intermediate in the biosynthesis of Verongida metabolites. It cannot yet be established if the chemical variability observed among the six samples of A.fulva collected in Brazil and the SAB is the result of different environmental factors, distinct chemical extraction and isolation protocols, or a consequence of hidden genetic diversity within the postulated morphological plasticity of this species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-liquid equilibrium experimental data for refined sunflower seed oil, artificially acidified with commercial oleic acid or commercial linoleic acid and a solvent (ethanol + water), were determined at 298.2 K. This set of experimental data and the experimental data from Cuevas et al.,(1) which were obtained from (283.2 to 333.2) K, for degummed sunflower seed oil-containing systems were correlated using NRTL and UNIQUAC models with temperature-dependent binary parameters. The deviation between experimental and calculated compositions presented average values of (1.13 and 1.41) % for NRTL and UNIQUAC equations, respectively, indicating that the models were able to correctly describe the behavior of compounds under different temperature and solvent hydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supercritical carbon dioxide (SC-CO(2)) extraction was employed to extract carotenoids from the freeze-dried pulp of pitanga fruits (Eugenia uniflora L.), an exotic fruit, rich in carotenoids and still little explored commercially. The SC-CO(2) extraction was carried out at two temperatures, 40 and 60 degrees C, and seven pressures, 100, 150, 200, 250, 300, 350 and 400 bar. The carotenoids were determined by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors. Lycopene, rubixanthin and P-cryptoxanthin were the main carotenoids present in the freeze-dried pitanga pulp, whereas beta-cryptoxanthin concentration was negligible in the SC-CO(2) extracts, for all the investigated state conditions. The maximum recovery of carotenoids was obtained at 60 degrees C and 250 bar, extracting 55% of the total carotenoid content, 74% of the rubixanthin and 78% of the lycopene from the pulp. Under these state conditions, the total carotenoid concentration in the extract was 5474 mu g/g, represented by 66% lycopene and 32% rubixanthin. The experimental state conditions produced different SC-CO(2) extracts with respect to the extraction yield and concentration of different carotenoids, indicating that the supercritical carbon dioxide was selective in the extraction of the pitanga carotenoids as a function of temperature and pressure. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.