2 resultados para Chemical defense

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were: (1) to test the existence of an aggregation pheromone in the gregarious psocid Cerastipsocus sivorii; (2) to compare the attractiveness of odors from different aggregations; (3) to test whether nymphs are able to chemically recognize damage-released alarm signals. In a choice experiment conducted in the laboratory, we showed that psocids are able to detect chemical cues from groups of conspecifics. Laboratory experiments also showed that nymphs are capable of chemically recognizing the aggregations where they came from. Finally, in a field experiment, most aggregations dispersed when exposed to the body fluids of a crushed conspecific, but no aggregations dispersed upon exposure to a crushed termite. The implications of these results for the evolution of sociality in psocopterans are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased (center dot)NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of (center dot)NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.