6 resultados para Cerebral Plasticity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objectives. To assess the prevalence of untreated dental caries in children with cerebral palsy and to assess socio-demographic, behavioural, and clinical covariates. Design. Cross-sectional assessment of 200 children and adolescents with cerebral palsy (2-17 years old) enrolled in a specialized healthcare unit in Sao Paulo, Brazil. The dental examination followed the World Health Organization`s guidelines for oral health surveys; familial caretakers informed on socio-economic status and behaviour; the patient`s medical record informed their clinical status. Results. The proportion of children that presented at least one tooth affected by untreated caries was 49.5%. Poor socio-economic standings and a higher frequency of sugar consumption associated with a worse profile of dental health; different types of cerebral palsy (spastic, tetraparesis) did not. The prevalence of untreated caries was higher than reference values assessed for the overall population of the same age range. Conclusions. The high burden of untreated dental caries on cerebral palsy patients reinforces the importance of the dentist in the interdisciplinary healthcare team attending these children. Factors associated with this outcome are the same for the general population; these findings underscore the necessity of implementing effective caries prevention in this population of cerebral palsy children.
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.
Resumo:
S100 beta is a soluble protein released by glial cells mainly under the activation of the 5-HT1A receptor. It has been reported as a neuro-trophic and -tropic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and the plasticity underlying long-term potentiation in adult brains. The ability of S100 beta to rapidly regulate neuronal morphology raises the interesting point of whether there are daily rhythm or gender differences in S100 beta level in the brain. To answer this question, the S100 beta expression in adult female and male rats, as well as in adult female CD-21 and S100 beta -/- female mice, were investigated. Scintillation counting and morphometric analysis of the immunoreactivity of S100 beta, showed rhythmic daily expression. The female and male rats showed opposite cycles. Females presented the highest value at the beginning of the rest phase (5:00 h), while in males the maximum value appeared in the beginning of the motor activity period (21:00 h). These results confirm previous S100 beta evaluations in human serum and cerebrospinal fluid reporting the protein`s function as a biomarker for brain damage (Gazzolo et al. in Clin Chem 49:967-970, 2003; Clin Chim Acta 330:131-133, 2003; Pediatr Res 58:1170-1174, 2005), similar behavior was also observed for GFAP in relation to Alzheimer Disease (Fukuyama et al. in Eur Neurol 46:35-38, 2001). The data should be taken into account when considering S100 beta as a biomarker of health condition. In addition, the results raise questions on which structure or condition imposes these rhythms as well as on the physiological meaning of the observed gender differences.
Resumo:
Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.
Resumo:
Background: Previous studies reported alterations in salivary flow rate and biochemical parameters of saliva in cerebral palsy (CP) individuals; however, none of these considered the type of neuromotor abnormality among CP individuals, thus it remains unclear whether the different anatomical and extended regions of the brain lesions responsible for the neurological damage in CP might include disruption of the regulatory mechanism of saliva secretion as part of the encephalopathy. The aim of this study was to evaluate salivary flow rate, pH and buffer capacity in saliva of individuals with CP, aged 3-16 years, with spastic neuromotor abnormality type and clinical patterns of involvement. Methods: Sixty-seven individuals with CP spasticity movement disorder, were divided in two groups according to age (3-8- and 9-16-years-old) and compared with 35 sibling volunteers with no neurological damage, divided in two groups according to age (3-8- and 9-16-years-old). Whole saliva was collected under slight suction and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01N HCL, and flow rate was calculated in ml/min. Results: In both age groups studied, whole saliva flow rate, pH and buffer capacity were significantly lower in the spastic CP group (P < 0.05). The clinical patterns of involvement did not influence the studied parameters. Conclusion: These findings show that individuals with spastic cerebral palsy present lower salivary flow rate, pH and buffer capacity that can increase the risk of oral disease in this population.