225 resultados para Cellular therapy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
In this review, we present (1) the scientific basis for the use of high-dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes (T1D); (2) an update of the clinical and laboratory outcome of 20 patients transplanted at the University Hospital of the Ribeirao Preto Medical School, University of Sao Paulo, Brazil, and followed up to January/2008, including 4 relapses among 19 patients without previous ketoacidosis; (3) a commentary on criticisms to our article that appeared in four articles from the scientific literature; and (4) a discussion of the prospectives for cellular therapy for T1D.
Resumo:
In order to consider the photodynamic therapy (PDT) as a clinical treatment for candidosis, it is necessary to know its cytotoxic effect on normal cells and tissues. Therefore, this study evaluated the toxicity of PDT with PhotogemA (R) associated with red light-emitting diode (LED) on L929 and MDPC-23 cell cultures and healthy rat palatal mucosa. In the in vitro experiment, the cells (30000 cells/cm(2)) were seeded in 24-well plates for 48 h, incubated with PhotogemA (R) (50, 100, or 150 mg/l) and either irradiated or not with a red LED source (630 +/- 3 nm; 75 or 100 J/cm(2); 22 mW/cm(2)). Cell metabolism was evaluated by the MTT assay (ANOVA and Dunnet`s post hoc tests; p < 0.05) and cell morphology was examined by scanning electron microscopy. In the in vivo evaluation, PhotogemA (R) (500 mg/l) was applied to the palatal mucosa of Wistar rats during 30 min and exposed to red LED (630 nm) during 20 min (306 J/cm(2)). The palatal mucosa was photographed for macroscopic analysis at 0, 1, 3, and 7 days posttreatment and subjected to histological analysis after sacrifice of the rats. For both cell lines, there was a statistically significant decrease of the mitochondrial activity (90-97%) for all PhotogemA (R) concentrations associated with red LED regardless of the energy density. However, in the in vivo evaluation, the PDT-treated groups presented intact mucosa with normal characteristics both macroscopically and histologically. From these results, it may be concluded that the association of PhotogemA (R) and red LED caused severe toxic effects on normal cell cultures, characterized by the reduction of mitochondrial activity and morphological alterations, but did not cause damage to the rat palatal mucosa in vivo.
Resumo:
After liver transplantation, migration of donor-derived hematopoietic cells to recipient can be detected in pheripheral blood. This state is termed microchimerism. The aim of this study was to investigate prospectively the presence of allogeneic microchimerism, the occurrence of acute cellular rejection and the level of immunosuppression in transplanted patients. Microchimerism occurrence between 10 days and 12 months after liver transplantation was analyzed in 47 patients aged between 15 and 65 by a two-stage nested PCR/SSP technique to detect donor MHC HLA-DR gene specifically. A pre-transplant blood sample was colleted from each patient to serve as individual negative control. Microchimerism was demonstrated in 32 (68%) of the 47 patients; of these, only 10 patients (31.2%) presented rejection. Early microchimerism was observed in 25 patients (78.12%) and late microchimerism in 7 patients (21.8%). Among the patients with microchimerism, 14 were given CyA and 18 were given FK506. In the group without microchimerism, 12 patients were given CyA and 03 were given FK506. There was a significant association between the presence of microchimerism and the absence of rejection (p=0.02) and also between microchimerism and the type of immunosuppression used. Our data indicate that microchimerism and probably differentiation of donor-derived leukocytes can have relevant immunologic effects both in terms of sensitization of recipient and in terms of immunomodulation toward tolerance induction. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To study were to reproduce an alveolar bone defect model in Wistar rats to be used for testing the efficacy of stem cell therapies. Additionally, we also aimed to determine the osteogenesis process of this osseous defect in the 1 month period post-surgery. METHODS: The animals were randomly divided into two groups of 7 animals each. A gingivobuccal incision was made, and a bone defect of 28 mm² of area was performed in the alveolar region. Animals were killed at 2 weeks after surgery (n=7) and 4 weeks after surgery (n=7). RESULTS: The average area of the alveolar defect at time point of 2 weeks was 22.27 ± 1.31 mm² and the average area of alveolar defect at time point of 4 weeks was 9.03 ± 1.17 mm². The average amount of bone formation at time point of 2 weeks was 5.73 ± 1.31 mm² and the average amount of bone formation at time point of 4 weeks was 19 ± 1.17 mm². Statistically significant differences between the amount of bone formation at 2 weeks and 4 weeks after surgery were seen (p=0.003). CONCLUSION: The highest rate of ossification occurred mostly from 2 to 4 weeks after surgery. This observation suggests that 4 weeks after the bone defect creation should be a satisfactory timing to assess the potential of bone inductive stem cells to accelerate bone regeneration in Wistar rats.
Resumo:
INTRODUCTION: The antibacterial effect of ozone (O3) has been described in the extant literature, but the role of O3 therapy in the treatment of certain types of infection remains controversial. OBJECTIVES: To evaluate the effect of intraperitoneal (i.p.) O3 application in a cecal ligation/puncture rat model on interleukins (IL-6, IL-10) and cytokine-induced neutrophil chemoattractant (CINC)-1 serum levels, acute lung injury and survival rates. METHODS: Four animal groups were used for the study: a) the SHAM group underwent laparotomy; b) the cecal ligation/puncture group underwent cecal ligation/puncture procedures; and c) the CLP+O2 and CLP+O3 groups underwent CLP+ corresponding gas mixture infusions (i.p.) throughout the observation period. IL-6, CINC-1 and IL-10 concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Acute lung injury was evaluated with the Evans blue dye lung leakage method and by lung histology. P<0.05 was considered significant. RESULTS: CINC-1 was at the lowest level in the SHAM group and was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group. IL-10 was lower for the SHAM group vs. the other three groups, which were similar compared to each other. IL-6 was lower for the SHAM group vs. all other groups, was lower for the CLP+O3 or CLP+O2 group vs. the cecal ligation/puncture group, and was similar for the CLP+O3 group vs. the CLP+O2 group. The lung histology score was lower for the SHAM group vs. the other groups. The Evans blue dye result was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group but similar to that of the SHAM group. The survival rate for the CLP+O3 group was lower than for the SHAM group and similar to that for the other 2 groups (CLP and CLP+O2). CONCLUSION: Ozone therapy modulated the inflammatory response and acute lung injury in the cecal ligation/puncture infection model in rats, although there was no improvement on survival rates.
Resumo:
Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.
Resumo:
Studies about the inorganic nanoparticles applying for non-viral release of biological and therapeutic species have been intensified nowadays. This work reviews the preparation strategies and application of layered double hydroxides (LDH) as carriers for storing, carrying and control delivery of intercalated species as drugs and DNA for gene therapy. LDH show low toxicity, biocompatibility, high anion exchange capacity, surface sites for functionalization, and a suitable equilibrium between chemical stability and biodegradability. LDH can increase the intercalated species stability and promote its sub-cellular uptake for biomedical purposes. Concerning the healthy field, LDH have been evaluated for clinical diagnosis as a biosensor component.
Resumo:
OBJECTIVE: New drugs have to be assessed in endodontic therapy due to the presence of microorganisms resistant to therapeutic procedures. Thus, this study evaluated the time- and concentration-dependent cytotoxicity of different antibiotics used in endodontic therapy. MATERIAL AND METHODS: Human gingival fibroblasts were treated and divided into the following experimental groups: Group I - control; Group II - ciprofoxacin hydrochloride; Group III - clyndamicin hydrochloride; and Group IV - metronidazole. Each drug was used at concentrations of 5, 50, 150, and 300 mg/L for 24, 48, 72, and 96 h. Cytotoxicity was evaluated by the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and spectrophotometric reading of ELISA plates. The results were analyzed by BioEstat 4.0 software using Kruskal-Wallis and Dunn's tests at a signifcance level of 5%. Cell viability was assessed for the different concentrations and times. RESULTS: All drugs presented dose-dependent cytotoxicity. Concentrations of 5 and 50 mgjL produced viable fibroblasts at all experimental times in all groups. CONCLUSIONS: Cell viability at 24 h was greater than in the other experimental times. Comparison between the same concentrations of antibiotics at different times showed that metronidazole presented the highest cell viability at 72 and 96 h compared to the other antibiotics, whereas clyndamicin hydrochloride showed higher cell viability at 72 h than ciprofoxacin hydrochloride.
Resumo:
FAPESP n. 07/55777-9 e n. 07/50009-3
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
AIM: To establish the efficacy and safety of a 7-d therapeutic regimen using omeprazole, bismuth suticitrate, furazolidone and amoxicillin in patients with peptic ulcer disease who had been previously treated with other therapeutic regimens without success. METHODS: Open cohort study which included patients with peptic ulcer who had previously been treated unsuccessfully with one or more eradication regimens. The therapeutic regimen consisted of 20 mg omeprazole, 240 mg colloidal bismuth subcitrate, 1000 mg amoxicillin, and 200 mg furazolidone, taken twice a day for 7 d. Patients were considered as eradicated when samples taken from the gastric antrum and corpus 12 wk after the end of treatment were negative for Helicobacter pylori (H pylori) (rapid urease test and histology). Safety was determined by the presence of adverse effects. RESULTS: Fifty-one patients were enrolled. The eradication rate was 68.8% (31/45). Adverse effects were reported by 31.4% of the patients, and these were usually considered to be slight or moderate in the majority of the cases. Three patients had to withdraw from the treatment due to the presence of severe adverse effects. CONCLUSION: The association of bismuth, furazolidone, amoxicillin and a proton-pump inhibitor is a valuable alternative for patients who failed to respond to other eradication regimens. It is an effective, cheap and safe option for salvage therapy of positive patients. (C) 2008 The WJG Press. All rights reserved.
Resumo:
Background: The Brazilian consensus recommends a short-term treatment course with clarithromycin, amoxicillin and proton-pump inhibitor for the eradication of Helicobacter pylori ( H. pylori). This treatment course has good efficacy, but cannot be afforded by a large part of the population. Azithromycin, amoxicillin and omeprazole are subsidized, for several aims, by the Brazilian federal government. Therefore, a short-term treatment course that uses these drugs is a low-cost one, but its efficacy regarding the bacterium eradication is yet to be demonstrated. The study's purpose was to verify the efficacy of H. pylori eradication in infected patients who presented peptic ulcer disease, using the association of azithromycin, amoxicillin and omeprazole. Methods: Sixty patients with peptic ulcer diagnosed by upper digestive endoscopy and H. pylori infection documented by rapid urease test, histological analysis and urea breath test were treated for six days with a combination of azithromycin 500 mg and omeprazole 20 mg, in a single daily dose, associated with amoxicillin 500 mg 3 times a day. The eradication control was carried out 12 weeks after the treatment by means of the same diagnostic tests. The eradication rates were calculated with 95% confidence interval. Results: The eradication rate was 38% per intention to treat and 41% per protocol. Few adverse effects were observed and treatment compliance was high. Conclusion: Despite its low cost and high compliance, the low eradication rate does not allow the recommendation of the triple therapy with azithromycin as an adequate treatment for H. pylori infection.