22 resultados para Cavendish Bananas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Introduction. This protocol aims at detecting and quantifying quiescent infections of Colletotrichum musae on bananas. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. The materials required and details of the three steps of the protocol (fruit sampling, fruit ripening and anthracnose lesion quantification) are described. Possible troubleshooting is discussed. Results. The protocol results in the quantification of anthracnose lesions on the fruits, which makes it possible to predict postharvest losses due to anthracnose (peel rot), and also to propose a better management of postharvest fungicide applications.
Resumo:
Sigatoka disease (SD) of bananas is caused by the pathogenic fungus Mycosphaerella musicola Leach. This disease provokes necrotic lesions on leaves and serious infestations can lead to a substantial reduction in the leaf area of infected plants and thus to yield losses. In addition to these effects on yield, SO was found to have an impact on fruit quality, especially because exported bananas ripen prematurely. In the present work, a plantation survey and experiments have been conducted in Guadeloupe (FWI) to assess the effect of this disease on the greenlife of bananas harvested at a constant physiological age, as measured in degree-days (dd). Our results revealed that bananas harvested at 900 dd from plants with high Sigatoka disease severity had normal diameter growth, but a shorter greenlife (GL) than bananas harvested from uninfected plants. These results indicate that SD is directly responsible for the reduction of banana greenlife since the reduction of GL could not be attributed to the harvest of fruits at a more advanced physiological age (dd). Furthermore, a correlation was noted between SO severity and GL The potential physiological mechanisms involved are also discussed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Application of the thermal sum concept was developed to determine the optimal harvesting stage of new banana hybrids to be grown for export. It was tested on two triploid hybrid bananas, FlhorBan 916 (F916) and FlhorBan 918 (F918), created by CIRAD`s banana breeding programme, using two different approaches. The first approach was used with F916 and involved calculating the base temperature of bunches sampled at two sites at the ripening stage, and then determining the thermal sum at which the stage of maturity would be identical to that of the control Cavendish export banana. The second approach was used to assess the harvest stage of F918 and involved calculating the two thermal parameters directly, but using more plants and a longer period. Using the linear regression model, the estimated thermal parameters were a thermal sum of 680 degree-days (dd) at a base temperature of 17.0 degrees C for cv. F916, and 970 dd at 13.9 degrees C for cv. F918. This easy-to-use method provides quick and reliable calculations of the two thermal parameters required at a specific harvesting stage for a given banana variety in tropical climate conditions. Determining these two values is an essential step for gaining insight into the agronomic features of a new variety and its potential for export. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Nuclear magnetic resonance water relaxation time changes in bananas during ripening: a new mechanism
Resumo:
BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry
Resumo:
Considering that oral preparations made with peel green bananas (e.g. flour and extracts) demonstrated healing effects on mucous membranes and skin, this study evaluated the healing and the antimicrobial property of a topical preparation based on extract of Musa sapientum L., Musaceae, (apple banana) in surgically induced wounds in the skin of male Wistar rats, 100 g. The extract was obtained by decoction, the presence of tannins was detected by phytochemical screening and 10% of the extract was incorporated into the carbopol gel (CMS gel). The processes of healing and bacterial isolation were evaluated in the following experimental groups: control (no treatment), treatment with placebo or with the CMS gel. The healing of surgical wounds treated with the CMS gel was faster when compared with the control and placebo groups and the treatment with CMS gel also inhibited the growth of pyogenic bacteria and enterobacteria in the wounds. The results indicate that the extract of Musa sapientum epicarp has healing and antimicrobial properties (in vivo), probably, due to tannins.
Resumo:
Introduction. This protocol aims at ( a) evaluating the resistance to post-harvest diseases within different genotypes of bananas, and ( b) comparing different origins of bananas ( geographic origin, physiological stage, etc.) for their susceptibility to post-harvest diseases. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the twelve steps of the protocol ( fruit sampling and inoculum preparation, wound anthracnose resistance study, quiescent anthracnose resistance study and crown-rot resistance study) are described. Results. Typical symptoms of the different diseases are obtained after artificial inoculation.
Resumo:
Introduction. This protocol aims at measuring the mechanical characteristics of bananas, especially peel and fruit hardness, and pulp firmness; it can also allow the mechanical characterisation of green or ripening fruit of different pedo-climatic origins and/or varieties. Materials and methods. This part describes the required laboratory materials and the three steps necessary for the measurement of the mechanical characteristics of bananas. Results. The data allow the drawing of a curve characterising the firmness of the fruit (slope), hardness of the peel (peak) and hardness of the pulp (plateau).
Resumo:
Introduction. This protocol aims at evaluating (a) the efficacy of new fungicides for the control of post-harvest diseases, (b) the efficacy of various application methods for the chemical control of post-harvest diseases, and (c) the quality of the fungicide solution during the same packing day where this solution is recycled. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the eighteen steps of the protocol (fruit sampling and inoculum preparation, wound anthracnose study, quiescent anthracnose study, and crown-rot study) are described. Results. Comparison between untreated control bananas and bananas treated with fungicide allows the calculation of the fungicide treatment efficacy.
Resumo:
Relationship between occurrence of Panama disease in banana trees of cv. Nanicao and nutrients in soil and leaves The objective of the present work was to verify if the incited symptoms in banana trees cv. Nanicao, belonging to the subgroup Cavendish, in Vale do Ribeira, are related to levels of nutrients in soil and leaves. Sixteen areas in Vale do Ribeira were selected, one half with symptomatic plants and the other with healthy plants. In those areas the third leaf of five plants and the soil near those plants were collected, at depths from 0 to 20 cm and from 20 to 40 cm. At both depths of the sampled soil, levels of Ca, Mg, PO(4)(-3), S and cationic exchange capacity (CEC) were significantly different among the areas, and the low values of these elements were present in the areas containing symptomatic plants. At both depths, Mg, Al and H in relation to CEC were significantly different among the areas, and the low values of Mg and high of Al and H were present in the areas with symptomatic plants. The N, K and S in the leaves were significantly different among the areas. These elements showed low values in the areas containing symptomatic plants. Despite the fact that some amounts of macronutrients of the soil and of the leaves are present only in the areas containing plants of Nanicao with symptoms similar to fusariosis, proof of a possible occurrence of race of the pathogen should be looked for in Vale do Ribeira.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanico variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.
Resumo:
The postharvest development of crown rot of bananas depends notably on the fruit susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot is variable and it was suggested that this depends on environmental preharvest factors. However, little is known about the preharvest factors influencing this susceptibility. The aim of this work was to evaluate the extent to which fruit filling characteristics during growth and the fruit development stage influence the banana susceptibility to crown rot. This involved evaluating the influence of (a) the fruit position at different levels of the banana bunch (hands) and (b) changing the source-sink ratio (So-Si ratio), on the fruit susceptibility to crown rot. The fruit susceptibility was determined by measuring the internal necrotic surface (INS) after artificial inoculation of Colletotrichum musae. A linear correlation (r = -0.95) was found between the hand position on the bunch and the INS. The So-Si ratio was found to influence the pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of bunches from which six hands were removed (two hands remaining on the bunch) proved to be significantly less susceptible to crown rot (INS = 138.3 mm 2) than those from bunches with eight hands (INS = 237.9 mm 2). The banana susceptibility to crown rot is thus likely to be influenced by the fruit development stage and filling characteristics. The present results highlight the importance of standardising hand sampling on a bunch when testing fruit susceptibility to crown rot. They also show that hand removal in the field has advantages in the context of integrated pest management, making it possible to reduce fruit susceptibility to crown rot while increasing fruit size.
Resumo:
Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1-4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates.