135 resultados para Cationic emulsions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.
Resumo:
Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.
Resumo:
Background: The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results: We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 mu g of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-gamma and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 mu g). Conclusion: Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.
Resumo:
Background: Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results: Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris. HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001-1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion: Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid.
Resumo:
The structure of a complex between hydrated DNA and a non-cationic lipid is studied, including its phase diagram. The complex is spontaneously formed by adding DNA fragments (ca. 150 base pairs in length) to non-cationic lipids and water. The self-assembly process often leads to highly ordered structures. The structures were studied by combining X-ray scattering, fluorescence and polarized microscopy, as well as freeze-fracture experiments with transmission electron microscopy. We observe a significant increase of the smectic order as DNA is incorporated into the water layers of the lamellar host phase, and stabilization of single phase domains for large amounts of DNA. The effect of confinement on DNA ordering is investigated by varying the water content, following three dilution lines. A rich polymorphism is found, ranging from weakly correlated DNA-DNA in-plane organizations to highly ordered structures, where transmembrane correlations lead to the formation of columnar rectangular and columnar hexagonal superlattices of nucleotides embedded between lipid lamellae. From these observations, we suggest that addition of DNA to the lamellar phase significantly restricts membrane fluctuations above a certain concentration and helps the formation of the lipoplex. The alteration of membrane steric interactions, together with the appearance of interfacial interactions between membranes and DNA molecules may be a relevant mechanism for the emergence of highly ordered structures in the concentrated regime.
Resumo:
A simple method was developed for spectrophotometric determination of some nonsteroidal anti-inflammatory drugs (meloxicam, piroxicam and tenoxicam) based on the reduction of copper(II) in buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-biquinoline acid. The-biquinoline acid. The absorbance values at 558 nm, characteristic of the formed Cu(I)/4,4'-dicarboxy-2,2'-biquinoline complexes, are linear with the concentrations (5.7-40 mmol L(-1), n = 5) of these oxicams (meloxicam r = 0.998; piroxicam and tenoxicam r = 0.999). The limit of detection values, in mmol L(-1), calculated for meloxicam (2.7), piroxicam (1.2) and tenoxicam (1.3) was obtained with 99% confidence level and the relative standard deviations for meloxicam (3.1%), piroxicam (5.1%) and tenoxicam (1.2%) were calculated using a 25 mmol L(-1) solution (n = 7). Mean recovery values for meloxicam, piroxicam and tenoxicam forms were 100 +/- 6.9, 98.6 +/- 3.6 and 99.4 +/- 2.5%, respectively. The conditional potential of Cu(II)/Cu(I) in complex medium of 7.5 mmol L(-1) BCA was determined to be 629 +/- 11 mV vs. NHE.
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
An experimental investigation of the kinetics of cationic polymerization of beta-pinene was performed using two different initiator systems under two different operating conditions (shot additions of initiator, and continuous feeding of monomer). The experiments were done using calorimetric measurements under isoperibolic conditions. The heat of polymerization of beta-pinene was found to be -30.6 kcal . mol(-1). A simple kinetic model was tentatively proposed, and the model fit reasonably well to the different experimental runs. Different values of the fitting parameters were obtained for runs carried out under different conditions, which can probably be ascribed to the presence of adventitious impurities in the commercial-grade monomer used.
Resumo:
In petroleum refineries, water is used in desalting units to remove the salt contained in crude oil. Typically, 7% of the volume of hot crude oil is water, forming a water-and-oil emulsion. The emulsion flows between two electrodes and is subjected to an electric field. The electrical forces promote the coalescence of small droplets of water dispersed in crude oil, and these form bigger droplets. This paper calculates the forces acting on the droplets, highlighting particularly the mechanisms proposed for droplet-droplet coalescence under the influence of an applied electric field. Moreover, a model is developed in order to calculate the displacement speed of the droplets and the time between droplet collisions. Thus, it is possible to simulate and optimize the process by changing the operational variables (temperature, electrical field, and water quantity). The main advantage of this study is to show that it is feasible to increase the volume of water recycled in desalting processes, thus reducing the use of freshwater and the generation of liquid effluents in refineries.
Resumo:
Minor components (polar components) and the degree of unsaturation of the fatty acids are the main factors responsible for the oxidative stability of bulk oils and emulsions. The isolated effects of these two factors and their interaction were evaluated in oil-in-water emulsions stored at 32 A degrees C. Samples of coconut, olive, soybean, linseed and fish oils, both full and stripped of their polar components, were used to prepare the emulsions (1% w/w). The maximum concentration of hydroperoxide (LOOH(max)) and the rate of formation of hydroperoxides (mu mol L(-1) h(-1)) were used to measure the primary products. Hexanal, propanal and malondialdehyde were used to determine the secondary products of the oxidized emulsions containing polyunsaturated fatty acids. LOOH(max) varied from 0.16 to 12.75 mmol/kg among the samples. The interaction between the polar components and the degree of unsaturation of the fatty acids was significant (p < 0.001) when the hydroperoxides were evaluated. In general, the degree of unsaturation (beta(1)) and the absence of polar components (beta(2)), respectively, represented 30 and 20% of the contribution to increase the mean oxidation, with the interaction (beta(12)) contribution being more sensitive to the rate of formation of hydroperoxides (16%) than to the LOOH(max) (5%). The significance of this interaction suggests that both strategies present synergism and should be applied to improve the oxidative stability of food emulsions.
Resumo:
The cooling intensity of topical emulsions added with encapsulated or free menthol was evaluated by a screened and trained panel recruited based on the American Society for Testing and Materials method. A sensory panel composed of 10 trained judges performed the evaluation of samples stored at 22 +/- 2C for 24 h and, after 28 days of storage, at 37.0 +/- 0.5C. The obtained data were analyzed by analysis of variance and Tukey`s test. The results showed an increase of cooling intensity as a function of encapsulated menthol concentration. The opposite was observed in samples added with free menthol, which may have caused sensory fatigue. Storage at 37 +/- 0.5C for 28 days had no impact on the cooling intensity of emulsions containing encapsulated menthol, demonstrating high stability and suggesting its application in cooling skin care products. In contrast, emulsions added with free menthol showed a drastic decrease of cooling intensity at 37 +/- 0.5C..
Resumo:
This article reports on modified chitosan as an alternative substance for protecting loss of volatile compounds during freeze drying. Moisture sorption isotherms of freeze-dried D-limonene emulsions in modified chitosan were determined at 15, 25, and 35 degrees C. The data were adjusted to the GAB model. Maltodextrin was used in a parallel experiment. Flavor released from microcapsules was measured. The monolayer humidity, the sorption heat, the diffusivity coefficients, and the surface area of freeze-dried D-limonene emulsions were determined.
Resumo:
Stable multiple emulsions containing andiroba oil and sunscreen have been formulated. These were prepared using the two-step procedure. The formulations were characterized and their stability over the time was evaluated by centrifugation, macroscopic, and microscopic analyses, and rheological measurements. The photoprotective efficacy of the O/W and O1/W/O2 containing or not andiroba oil was evaluated by in vivo sun protection factor determination according to the FDA method. The formulations exhibited good stability during 30 days after preparation at different temperatures. These presented pseudoplastic flow behaviour and thixotropy. The increase of in vivo SPF value was not observed when andiroba oil was incorporated into emulsions containing ethylhexyl methoxycinnamate. These multiple emulsions can be utilized as an interesting topical vehicle.
Resumo:
Emulsions containing liquid crystals present interesting properties and advantages such as the skin moisturize increase, active release modulation, and emulsion stabilization. In this work, emulsions containing annatto, coffee and tea tree oils, and nonionic surfactants were developed. The HLB method was used for selection of surfactants. The required HLB value was established (9.0). Liquid crystals were attained when used the surfactant mixture Ceteareth-5 and Steareth-2 and identified as lamellar. The emulsions showed pseudoplastic behavior and tixotropy. The ternary diagram was useful in the selection of the proportion of surfactant and oily phase considering skin compatibility and liquid crystal presence.