29 resultados para Cast
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.
Resumo:
Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.
Resumo:
Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.
Resumo:
We examined whether single-nucleotide polymorphisms (SNPs) in the calpain (CAPN) and calpastatin (CAST) genes, described from Bos primigenius taurus, are polymorphic in Nellore cattle. We also looked for a possible association of linkage disequilibrium of this polymorphism with tenderness of the longissimus dorsi muscle after 7, 14 and 21 days of postmortem aging in 638 purebred Nellore bulls. Meat tenderness was measured as Warner-Bratzler shear force. Additive and dominance effects were tested for SNPs of the three genotypic classes; the substitution effect was tested for SNPs with missing genotypic classes. Genotypic and gene frequencies were also calculated for the different SNPs. An increase in tenderness was observed from 7 to 21 days; the average values for shear force at 7, 14 and 21 days of aging were 5.92 +/- 0.06, 4.92 +/- 0.05, and 4.38 +/- 0.04 kg, respectively. All markers showed polymorphism, but there was no CC genotype for CAPN316, and few animals showed the AA genotype for CAPN530. The alleles CAPN4751, UOGCAST1, and WSUCAST were found to have additive and dominance effects for shear force at 7, 14 and 21 days, while CAPN316 showed a substitution effect for shear force at 7 and 21 days. An additive-by-additive epistatic interaction was observed between CAPN4751 and markers on the CAST gene. In conclusion, these markers should be considered for use in breeding programs.
Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys
Resumo:
Beta titanium (Ti) alloys are one of the most promising groups of Ti alloys for biomedical applications. This work presents the production, microstructural characterization, and mechanical properties of as-cast Ti-10Mo-xNb (x = 0, 3, 6, 9, 20, and 30) alloys. They were produced via arc melting and characterized by scanning electron microscopy and X-ray diffraction. The density of each alloy was measured by the Archimedes method and the mechanical characterization was carried out by using the Vickers microhardness test and Young`s modulus measurements. The results show a near beta microstructure for niobium (Nb) contents lower or equal to 9 wt% while beta single-phase microstructure was obtained for higher Nb additions. The microhardness values decreased with the increase of Nb content in the alloys. The elastic modulus values of Ti-10Mo-3Nb and Ti-10Mo-20Nb alloys were lower than those of cp Ti and Ti-6Al-4V.
Resumo:
Accurate knowledge of several Me-B (Me - Metal) phase diagrams are important to evaluate higher order systems such as Me-Si-B ternaries. This work presents results of microstructural characterization of as-cast Cr-B alloys which are significant to assess the liquid compositions associated to most of the invariant reactions of this system. Alloys of different compositions were prepared by arc melting pure Cr and B pressed powder mixtures under argon atmosphere in a water-cooled copper crucible with non-consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using back-scattered electron (BSE) image mode and X-ray diffraction (XRD). In general, a good agreement was found between our data and those from the currently accepted Cr-B phase diagram. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This work presents results of microstructural characterization of as-cast Cr-Si alloys. The alloys were prepared by arc melting pure Cr (min. 99.996%) and Si (min. 99.998%) powder mixtures under argon atmosphere in a water-cooled copper crucible with nonconsumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy (SEM), using the back-scattered electron (BSE) image mode and X-ray diffraction (XRD). The results confirm the currently accepted Cr-Si phase diagram in terms of the invariant reactions and solid phases present in this system. Small corrections are proposed for the compositions of the liquid phase in the following reactions: (i) L double left right arrow Cr-ss+Cr3Si, from 15 to 16 at.% Si; (ii) L+alpha Cr5Si3 double left right arrow CrSi, from 51 at.% Si to slightly above 53 at.% Si; (iii) L double left right arrow CrSi+CrSi2, from 56 to slightly above 57 at.% Si; (iv) L double left right arrow CrSi2+Si, from 82 to slightly above 85 at.% Si. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material`s impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 degrees C and 980 degrees C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 degrees C and block-shaped when heat treated at 980 degrees C. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010
Resumo:
The effects of different tempering temperatures (300-600 degrees C) on abrasive wear resistance of mottled cast iron were studied. Abrasive wear tests were carried out using the rubber-wheel test on quartz sand and the pin test on Al(2)O(3) abrasive cloths. The retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism. Bulk hardness and matrix hardness before and after the tests were measured. The results showed that in the two-body (pin-on-disc test) system, the main wear mechanism was microcutting and high matrix hardening was presented. The wear rates presented higher correlation with the retained austenite than with the bulk and matrix hardness. In the three-body system (sand-rubber wheel), the wear surfaces presented indentations due to abrasive rolling. The wear rates had better correlation with both the bulk and matrix hardness (before and after the wear test) than with the retained austenite content. There are two groups of results, high and low wear rates corresponding to each tribosystem, two-body abrasive wear and three-body abrasive wear, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 degrees C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M(3)C carbides. Samples with cooling rate of 15 degrees C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 degrees C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M(3)C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 degrees C/s, for grain size of 66 and 93 mu m. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe. (C) 2009 Elsevier B.V. All rights reserved.