3 resultados para Case Study, Culture, Internal Communication, Change Management

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the potential role of aerosols in modifying clouds and precipitation is presented using a numerical atmospheric model. Measurements of cloud condensation nuclei (CCN) and cloud size distribution properties taken in the southwestern Amazon region during the transition from dry to wet seasons were used as guidelines to define the microphysical parameters for the simulations. Numerical simulations were carried out using the Brazilian Development on Regional Atmospheric Modeling System, and the results presented considerable sensitivity to changes in these parameters. High CCN concentrations, typical of polluted days, were found to result in increases or decreases in total precipitation, depending on the level of pollution used as a reference, showing a complexity that parallels the aerosol-precipitation interaction. Our results show that on the grids evaluated, higher CCN concentrations reduced low-to-moderate rainfall rates and increased high rainfall rates. The principal consequence of the increased pollution was a change from a warm to a cold rain process, which affected the maximum and overall mean accumulated precipitation. Under polluted conditions, cloud cover diminished, allowing greater amounts of solar radiation to reach the surface. Aerosol absorption of radiation in the lower layers of the atmosphere delayed convective evolution but produced higher maximum rainfall rates due to increased instability. In addition, the intensity of the surface sensible heat flux, as well as that of the latent heat flux, was reduced by the lower temperature difference between surface and air, producing greater energy stores at the surface.