97 resultados para Cartilage destruction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5610 6 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1(+), CD8(+) and CD4(+) cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4(+) and CD8(+) cells were activated, increased frequencies of CD69(+) CD8(+), CD69(+) CD4(+) and CD25(+) CD122(+) CD4(+) cells were observed at 24 and 48 h after challenge, and of CD25(-)CD122(+)CD4(+) cells at 48 h. The major role of CD4(+) cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-gamma-producing CD4(+) cells 24 h after challenge. In contrast, liver CD8(+) cells produced little IFN-gamma, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge.
Resumo:
Objectives: The high incidence of respiratory disorders is one of the main problems in perinatal medical care. With the increased use of intubation, the incidence of laryngeal injury causing stenosis has also increased. The principal constriction point in the infant`s larynx is the midcricoid area. We sought to provide detailed morphometric data on the anatomy of the cricoid cartilage and its relationship with growth and body characteristics of fetuses at 5 to 9 months of gestational age. Methods: Nineteen larynges obtained from 17 stillborn infants and 2 newborn infants ranging in gestational age from 5 to 9 months were studied. Measurements of the cricoid cartilage were made with a millimeter-graded caliper. Results: Weight was the variable most correlated with cricoid measurements. The cricoid lumen configuration showed an almost elliptic shape and did not change with gestational age. The mean inner subglottic cricoid area was 19.27 +/- 9.62 mm(2) and was related to weight and body surface area. Cricoid growth was more pronounced at the outer portion of the cartilage. Conclusions: The cricoid lumen configuration was elliptic, and its mean area was smaller than that of available endotracheal tubes. This lumen area was most influenced by weight and height.
Resumo:
Background: Although the role of cartilage grafts in reconstruction of the posterior eyelid lamella is well established, spontaneous conjunctival epithelialization on such grafts has yet to be fully proven. The aim of this study was to perform a comparative analysis of the influence of perichondrium on conjunctival epithelialization over conchal cartilage grafts used in eyelid reconstruction in rabbits. Methods: The posterior lamellae of 100 lower eyelids from 50 rabbits were reconstructed with autogenous grafts of conchal ear cartilage. In the right eyelids, cartilage was grafted with the perichondrium in direct contact with the eyeball, and the left eyelids were reconstructed in a similar manner but using cartilage grafts without perichondrium. The animals were killed after 1, 2, 3, 4, and 5 weeks, and their lower eyelids were analyzed macroscopically and histologically. Results: The percentage difference in conjunctival epithelialization on the cartilage with perichondrium and that without perichondrium was 11.41 percent in the first week of the experiment, 13.64 percent in the second week, 18.69 percent in the third week, 10.38 percent in the fourth week, and 6.17 percent in the fifth week. The average percentage conjunctival epithelialization in the eyelids reconstructed with a cartilage graft with perichondrium was significantly higher throughout the 5 weeks of the experiment than in the eyelids reconstructed with cartilage without perichondrium (p < 0.0002). Conclusion: It was found that the perichondrium had an important role in conjunctival epithelialization in eyelids reconstructed with a cartilage graft in the present study. (Plast. Reconstr. Surg. 123: 55, 2009.)
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic joint inflammation and continuous immune cell infiltration in the synovium. These changes are linked to inflammatory cytokine release, leading to eventual destruction of cartilage and bone. During the last decade new therapeutic modalities have improved the prognosis, with the introduction of novel biological response modifiers including anti-TNF alpha CTLA4Ig and, more recently, anti-IL6. In the present study we looked at the immunological effects of these three forms of therapy. Serum, obtained from patients with RA was analyzed for TNF alpha, IL6, IL10, IFN gamma, and VEGF, and in parallel, circulating plasmacytoid and myeloid dendritic cells (DC) were enumerated before and after three infusions of the respective biological treatments. After treatment with anti-IL6, we found a significant reduction of IL6 and TNF alpha levels and the percentage of both DC subsets decreased. Although the results did not reach statistical significance for anti-TNF alpha treatment, similar trends were observed. Meanwhile, CTLA4Ig therapy led to the reduction IFN gamma levels only. None of the treatments modified significantly VEGF or IL10 levels. These findings may explain why patients with RA improve more rapidly on IL-6 therapy than with the other two modalities.
Resumo:
Objectives: Severe glottic/subglottic stenosis (complex laryngotracheal stenosis) is a rare but challenging complication of endotracheal intubation. Laryngotracheal reconstruction with cartilage graft and an intralaryngeal stent is a procedure described for complex laryngotracheal stenosis management in children; however, for adults, few options remain. Our aim was to analyze the results of laryngotracheal reconstruction as a treatment for complex laryngotracheal stenosis in adults, considering postoperative and long-term outcome. Methods: Laryngotracheal reconstruction (laryngeal split with anterior and posterior interposition of a rib cartilage graft) has been used in our institution to manage glottic/subglottic stenosis restricted to the larynx; laryngotracheal reconstruction associated with cricotracheal resection has been used to treat glottic/subglottic/upper tracheal stenosis (extending beyond the second tracheal ring). A retrospective study was conducted, including all patients with complex laryngotracheal stenosis treated surgically in our institution from January of 2002 until December of 2005. Results: Twenty patients (10 male and 10 female patients; average age, 36.13 years; age range, 18-54 years) were included. There were no deaths, and the postoperative complications were as follows: dysphonia, 25%; subcutaneous emphysema, 10%; tracheocutaneous fistula, 20%; wound infection, 15%; and bleeding, 5.0%. Eighty percent of the patients were completely decannulated after a mean of 23.4 months of follow-up (range, 4 -55 months). Conclusions: Laryngeal split with anterior and posterior cartilage graft interposition as an isolated procedure or associated with a cricotracheal resection is a feasible and low-morbidity alternative for complex laryngotracheal stenosis treatment.
Resumo:
Objective: To investigate the association of different types of magnetic resonance imaging (MRI)-detected medial meniscal pathology with subregional cartilage loss in the medial tibiofemoral compartment. Methods: A total of 152 women aged >= 40 years, with and without knee osteoarthritis (OA) were included in a longitudinal 24-month observational study. Spoiled gradient recalled acquisitions at steady state (SPGR) and T2-weighted fat-suppressed MRI sequences were acquired. Medial meniscal status of the anterior horn (AH), body, and posterior horn (PH) was graded at baseline: 0 (normal), 1 (intrasubstance meniscal signal changes), 2 (single tears), and 3 (complex tears/maceration). Cartilage segmentation was performed at baseline and 24-month follow-up in various tibiofemoral subregions using computation software. Multiple linear regression models were applied for the analysis with cartilage loss as the outcome. In a first model, the results were adjusted for age and body mass index (BMI). In a second model, the results were adjusted for age, BMI and medial meniscal extrusion. Results: After adjusting for age, BMI, and medial meniscal extrusion, cartilage loss in the total medial tibia (MT) (0.04 mm, P=0.04) and the external medial tibia (eMT) (0.068 mm, P=0.04) increased significantly for compartments with grade 3 lesions. Cartilage loss in the total central medial femoral condyle (cMF) (0.071 mm, P=0.03) also increased significantly for compartments with grade 2 lesions. Cartilage loss at the eMT was significantly related to tears of the PH (0.074 mm; P=0.03). Cartilage loss was not significantly increased for compartments with grade 1 lesions. Conclusion: The protective function of the meniscus appears to be preserved in the presence of intrasubstance meniscal signal changes. Prevalent single tears and meniscal maceration were found to be associated with increased cartilage loss in the same compartment, especially at the PH. (C) 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: The objective of the study was to compare the functional and aesthetic results of fractured orbital wall reconstruction with an auricular cartilage graft or absorbable polyacid copolymer. Materials and Methods: Twenty patients with blow-out orbital fracture/orbital floor associated or not with the medial wall were assessed by the same craniofacial surgical group. All were evaluated preoperatively and postoperatively by an ophthalmologist for diplopia, enophthalmos, exophthalmos, sensitivity, ophthalmic reflexes, intraocular pressure, and visual field. The patients were subjected to a preoperative facial multislice computed tomographic scan, repeated 6 months after surgery. Eight patients underwent reconstruction with an auricular cartilage graft, and 12 patients, with blade absorbable polyacid copolymer. Subtarsal access was used for all patients. Results: Two patients showed temporary ectropion, 1 in each group. All patients presented satisfactory ocular function, and all tests revealed good orbital delineation, orbital symmetry, periorbital sinus individualization, and reduction of blow-out. Conclusions: The blow-out orbital wall reconstruction can be performed with the use of an auricular cartilage or with a blade absorbable copolymer without differences regarding functional or aesthetic complications and sequelae.
Resumo:
Osteoarthritis (OA) is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available. The field of joint imaging, and particularly magnetic resonance (MR) imaging, has evolved rapidly owing to technical advances and the application of these to the field of clinical research. Cartilage imaging certainly is at the forefront of these developments. In this review, the different aspects of OA imaging and cartilage assessment, with an emphasis on recent advances, will be presented. The current role of radiography, including advances in the technology for joint space width assessment, will be discussed. The development of various MR imaging techniques capable of facilitating assessment of cartilage morphology and the methods for evaluating the biochemical composition of cartilage will be presented. Advances in quantitative morphologic cartilage assessment and semiquantitative whole-organ assessment will be reviewed. Although MR imaging is the most important modality in imaging of OA and cartilage, others such as ultrasonography play a complementary role that will be discussed briefly.
Resumo:
Objective To evaluate if two different measures of synovial activation, baseline Hoffa synovitis and effusion synovitis, assessed by MRI, predict cartilage loss in the tibiofemoral joint at 30 months follow-up in subjects with neither cartilage damage nor tibiofemoral radiographic osteoarthritis of the knee. Methods Non-contrast-enhanced MRI was performed using proton density-weighted fat-suppressed sequences in the axial and sagittal planes and a short tau inversion recovery sequence in the coronal plane. Hoffa synovitis, effusion synovitis and cartilage status were assessed semiquantitatively according to the WORMS scoring system. Included were knees that had neither radiographic osteoarthritis nor MRI-detected tibiofemoral cartilage damage at the baseline visit. The presence of Hoffa synovitis was defined as any grade = 2 (range 0-3) and effusion synovitis as any grade = 2 (range 0-3). Logistic regression was performed to examine the relation of the presence of either measure to the risk of cartilage loss at 30 months adjusting for other potential confounders. Results Of 514 knees included in the analysis, the prevalence of Hoffa synovitis and effusion synovitis at the baseline visit was 8.4% and 10.3%, respectively. In the multivariable analysis, baseline effusion synovitis was associated with an increased risk of cartilage loss. No such association was observed for baseline Hoffa synovitis. Conclusions Baseline effusion synovitis, but not Hoffa synovitis, predicted cartilage loss. The findings suggest that effusion synovitis, a reflection of inflammatory activity including joint effusion and synovitic thickening, may play a role in the future development of cartilage lesions in knees without osteoarthritis.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
Objective. The aim of this study was to determine the influence of periapical radiographs, cone beam computed tomography (CBCT) sections, and cone beam volumetric data on the determination of periapical bone destruction in endodontically treated distal root canals of premolar canine teeth. Nontreated mesial roots were used as controls. Study design. Enterococcus faecalis strain (ATCC 29212) was inoculated into 30 root canals of 2 mongrel dogs to induce apical periodontitis. After 60 days, the root canals of the distal roots of the 11 mandibular and 4 maxillary premolars were endodontically treated (n = 15). The mesial root canals were used as controls (no treatment). The bone destruction was evaluated after 6 months by 5 evaluators using periapical radiographs and by CBCT (coronal and sagittal sections). After the experimental period, the area of the lesions in periapical radiographs and CBCT sections were measured in mm(2) using the ImageTool software. A single evaluator measured the volumetric data using the OsiriX software. The comparison between the diagnosis methods in treated root canals and controls was performed using parametric and nonparametric criteria. The Pearson correlation coefficient was computed between radiographic values and CBCT volumetric data in treated root canals and controls. Results. The results showed the presence of chronic apical periodontitis in every inoculated tooth. After 6 months, periapical radiographs, coronal CBCT sections, and volumetric data showed lower bone destruction in endodontically treated teeth in comparison with the control group (P < .05). The 5 evaluators found no differences between the apical periodontitis area of treated teeth and controls when CBCT sagittal sections were used (P > .05). No correlation was found between x-ray and CBCT volumetric values in treated root canals. Conclusions. Although selected CBCT sagittal sections showed similar values of bone destruction in endodontically and nontreated root canals, volumetric CBCT data showed that periapical lesions of endodontically treated root canals had half of the volume of periapical lesions in nontreated root canals. No relationship could be found between the periapical values of bone destruction and volumetric data found in CBCT of treated rood canals. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 272-279)
Resumo:
We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.