8 resultados para Captive birds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Alagoas Curassow Mitu mitu is considered extinct in the wild. Since 1979, two females and a male caught in the wild have bred successfully in captivity, and, in 1990, hybridizations between M. mitu and Razor-billed Mitu M. tuberosum were performed. By June 2008, there were around 130 living birds in two different aviaries. We sequenced two regions of the mitochondrial DNA of both captive stocks of Alagoas Curassows. We unequivocally identified hybrids that have haplotype typical of M. tuberosum. However, unless the original studbook can be recovered there is no confident way to discriminate ""pure"" M. mitu birds for breeding and reintroduction purposes. Allied with morphological data gathered in an independent study, we suggest that conservation actions need to focus on specimens with diagnostic phenotypic characters of M. mitu, and avoid birds with mitochondria, genetic contribution of M. tuberosum. Although we have detected low levels of genetic variability among captive birds, the steady increase of the captive population suggests that inbreeding depression and hybridization are not a reproductive hindrance. Reintroduction of some of these potential hybrid birds in the original area of occurrence of the Alagoas Curassow may be the only hope to fill in the ecological niche left vacant. An educational program involving local communities to conserve future reintroduction of curassows and their restored habitat is highly recommended. Accepted 12 November 2009.
Resumo:
Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge-related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two-year period, birds were captured with mist nets to a standardized effort of 680 net-hours at each site (similar to 22 000 net-hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes.
Resumo:
When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds` preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale.
Resumo:
Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.
Resumo:
One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.
Resumo:
In fragmented landscapes, agroforest woodlots can potentially act as stepping stones facilitating movement between forest fragments. We assessed the influence of agroforest woodlots on bird distribution and diversity in the Atlantic forest region (SE Brazil), and also tested which categories of species can use different types of connection elements, and whether this use is influenced by the distance to large forest patches. We studied two fragmented landscapes, with and without stepping stones linking large fragments, and one forested landscape. Using a point count, a bird survey was undertaken in the fragmented landscapes in five different elements: large remnants (> 400 ha), agroforest woodlots (0.4-1.1 ha), small patches (0.5-7 ha), riparian corridor, and pasture areas (the main matrix). Generalist and open-area species were commonly observed in the agroforest system or other connection elements, whereas only a few forest species were present in these connections. For the latter species, the distance of woodlots to large patches was essential to determine their richness and abundance. Based on our results and data from literature, we suggest that there is an optimal relationship between the permeability of the matrix and the efficiency of stepping stones, which occurs at intermediate degrees of matrix resistance, and is species-dependent. Because the presence of agroforest system favors a higher richness of generalist species, they appeared to be more advantageous for conservation than the monoculture system; for this reason, they should be considered as a management alternative, particularly when the matrix permeability requirement is met.
Resumo:
The bare-faced curassow (Crax fasciolata) is a large Neotropical bird that suffers anthropogenic pressure across much of its range. A captive population is maintained for conservation management, although there has been no genetic screening of stocks. Based on the six microsatellite markers developed for Crax globulosa, the genetic variability of C. fasciolata and possible differences between a wild and a captive population were investigated. Only three loci were polymorphic, with a total of 27 alleles. More than half of these alleles were private to the wild (n = 8) or captive (n = 7) populations. Significant deviations from Hardy-Weinberg equilibrium were restricted to the captive population. Despite the number of private alleles, genetic drift has probably promoted differentiation between populations. Our results indicate that wild C. fasciolata populations are genetically impoverished and structured, but species-specific microsatellite markers will be necessary for a more reliable assessment of the species` genetic diversity.
Resumo:
Fecundity and oocyte development in Salminus hilarii female brood stock were analyzed with the aim of investigating the impact of migration impediment on oogenesis. Histological analyses of the ovaries were performed in adult females caught in two different environments-the TietA(a) River (natural) and captivity-and the gonadossomatic index, oocyte diameter and fecundity determined. Five germ cell development stages (oogonium, perinucleolar, cortical alveoli, vitellogenic, ripe) and two other structures (postovulatory follicles and atretic oocytes) were observed in females caught in the river. Captive animals lacked the ripe oocytes and postovulatory follicles and had a relatively higher number of atretic oocytes. Females in captivity are known to produce larger oocytes, and they release fewer eggs in each spawn (absolute fecundity) when compared with animals that are able to migrate. Our results suggest that the TietA(a) River is undergoing alterations which are being reflected in the reproductive performance of S. hilarii, mainly due to the presence of atretic oocytes in females caught in the river. The lack of postovulatory follicles and ripe oocytes in captive animals reveals that migratory impediment negatively impacts final oocyte maturation. However, the stage of maturation reached is adequate for ovulation induction with hormone manipulation.