5 resultados para Canon Powershot A640, Fisheye lens
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49: 368-379, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
The purpose of this work is to study the potentialities of phase-shifting real-time holographic interferometry for the analysis of light-induced lens in photoreffactive and nonlinear optical materials. We show that this technique can be used for quantitative evaluation of the phase distribution of a wavefront changed by a light-induced lens and, consequently, the refractive index changes in these materials. The basic principle of this technique combines real-time holographic interferometry with phase-shifting technique for interferogram analysis. This method is demonstrated with in situ visualization, monitoring and analysis in real-time and uses a Bi(12)SiO(20) crystal as the holographic medium and a Bi(12)TiO(20) as the test sample. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present work reports on the thermo-optical properties of photorefractive sillenite Bi(12)SiO(20) (BSO) crystals obtained by applying the Thermal Lens Spectrometry technique (TLS). This crystals presents one high photorefractive sensitivity in the region blue-green spectra, since the measurements were carried out at two pump beam wavelengths (514.5 nm and 750 nm) to study of the light-induced effects in this material (thermal and/or photorefractive). We determine thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT) in sillenite crystals. These aspects, for what we know, not was studied in details up to now using the lens spectrometry technique and are very important against of the promising potentiality of applications these crystals in non linear optics, real time holography and optical processing data.
Resumo:
In this work, the light-induced lens effect due to thermal and/or photorefractive processes was studied in pyroelectric (undoped and Fe(2+)-doped) lithium niobate crystals (LiNbO(3)) using thermal lens spectrometry with a two-beam (pump-probe) mode-mismatched configuration. The measurements were carried out at two pump beam wavelengths (514.5 and 750 nm) to establish a full understanding of the present effects in this material (thermal and/or photorefractive). We present an easy-to-implement method to determine quantitative values of the pyroelectric coefficient (dPs/dT), its contribution to the thermal effect and other thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT). These measurements were performed in LiNbO(3) and LiNbO(3): Fe (0.1 ppm Fe(2+)) crystals with c axis along the direction of laser propagation.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.