2 resultados para Cadena hotelera
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.
Resumo:
Antioxidant potential is generally investigated by assaying the ability of a compound to protect biological systems from free radicals. However, non-radical reactive oxygen species can also be harmful. Singlet molecular oxygen ((1)O(2)) is generated by energy transfer to molecular oxygen. The resulting (1)O(2) is able to oxidize the nucleoside 2`-deoxyguanosine (dGuo), which leads to the formation of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin 2`-deoxyribonucleoside diastereomers (dSp) in an aqueous solution. The main objective of the present study was to verify whether the presence of flavonoids (flavone, apigenin, quercetin, morin and catechin) at different concentrations could protect dGuo from (1)O(2) damage. Of the tested flavonoids, flavone possessed antioxidant activity, as determined by a decrease in the formation of both products. Apigenin, morin, quercetin and catechin all increased the formation of 8-oxodGuo at a concentration of 100 mu M. The quantification of plasmid strand breaks after treatment with formamidopyrimidine-DNA glycosylase showed that flavone protected and quercetin and catechin enhanced DNA oxidation. Our results show that compounds, such as flavonoids, may affect the product distribution of (1)O(2)-mediated oxidation of dGuo, and, in particular, high concentrations of flavonoids with hydroxyl groups in their structure lead to an increase in the formation of the mutagenic lesion 8-oxodGuo. (C) 2010 Elsevier Ltd. All rights reserved.