78 resultados para CURVED SPACE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
It is shown that in quantum gravity at finite temperature, the effective potential evaluated in the tadpole approximation can have a local minimum below a certain critical temperature. However, when the leading higher order thermal loop corrections are included, one finds that no static solution exists at high temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
This paper investigates the predictions of an inflationary phase starting from a homogeneous and anisotropic universe of the Bianchi I type. After discussing the evolution of the background spacetime, focusing on the number of e-folds and the isotropization, we solve the perturbation equations and predict the power spectra of the curvature perturbations and gravity waves at the end of inflation. The main features of the early anisotropic phase is (1) a dependence of the spectra on the direction of the modes, (2) a coupling between curvature perturbations and gravity waves and (3) the fact that the two gravity wave polarizations do not share the same spectrum on large scales. All these effects are significant only on large scales and die out on small scales where isotropy is recovered. They depend on a characteristic scale that can, but a priori must not, be tuned to some observable scale. To fix the initial conditions, we propose a procedure that generalizes the one standardly used in inflation but that takes into account the fact that the WKB regime is violated at early times when the shear dominates. We stress that there exist modes that do not satisfy the WKB condition during the shear-dominated regime and for which the amplitude at the end of inflation depends on unknown initial conditions. On such scales, inflation loses its predictability. This study paves the way for the determination of the cosmological signature of a primordial shear, whatever the Bianchi I spacetime. It thus stresses the importance of the WKB regime to draw inflationary predictions and demonstrates that, when the number of e-folds is large enough, the predictions converge toward those of inflation in a Friedmann-Lemaitre spacetime but that they are less robust in the case of an inflationary era with a small number of e-folds.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.
Resumo:
This study evaluated the sealing ability of different lengths of remaining root canal filling and post space preparation against coronal leakage of Enterococcus faecalis. Forty-one roots of maxillary incisors were biomechanically prepared, maintaining standardized canal diameter at the middle and coronal thirds. The roots were autoclaved and all subsequent steps were undertaken in a laminar flow chamber. The canals of 33 roots were obturated with AH Plus sealer and gutta-percha. The root canal fillings were reduced to 3 predetermined lengths (n=11): G1=6 mm, G2=4 mm and G3=2 mm. The remaining roots served as positive and negative controls. Bacterial leakage test apparatuses were fabricated with the roots attached to Eppendorf tubes keeping 2 mm of apex submerged in BHI in glass flasks. The specimens received an E. faecalis inoculum of 1 x 107 cfu/mL every 3 days and were observed for bacterial leakage daily during 60 days. Data were submitted to ANOVA, Tukey's test and Fisher's test. At 60 days, G1 (6 mm) and G2 (4 mm) presented statistically similar results (p>0.05) (54.4% of specimens with bacterial leakage) and both groups differed significantly (p<0.01) from G3 (2 mm), which presented 100% of specimens with E. faecalis leakage. It may be concluded that the shortest endodontic obturation remnant leaked considerably more than the other lengths, although none of the tested conditions avoids coronal leakage of E. faecalis.
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
SEVERAL MODELS OF TIME ESTIMATION HAVE BEEN developed in psychology; a few have been applied to music. In the present study, we assess the influence of the distances travelled through pitch space on retrospective time estimation. Participants listened to an isochronous chord sequence of 20-s duration. They were unexpectedly asked to reproduce the time interval of the sequence. The harmonic structure of the stimulus was manipulated so that the sequence either remained in the same key (CC) or travelled through a closely related key (CFC) or distant key (CGbC). Estimated times were shortened when the sequence modulated to a very distant key. This finding is discussed in light of Lerdahl's Tonal Pitch Space Theory (2001), Firmino and Bueno's Expected Development Fraction Model (in press), and models of time estimation.
Resumo:
Certain areas of the city of Sao Paulo, as many others around the world, including in Lisbon, Barcelona and Buenos Aires, have been going through a process of requalification, in special the ones commonly known as old and/or traditional city. Regarding Sao Paulo, some exceptional actions have been taken downtown with investments in rehabilitation/requalification of areas that concentrated the historical, urbanistic and cultural heritages, such as Praca da S and its cathedral, as well as the revaluation/rehabilitation projects of other squares like Praca da Republica, other areas as the previously called Cracolandia (due to high consumption/deal of crack), known today as Nova Luz, besides propositions to reevaluate areas already modified, such as Vale do Anhangabau. In all propositions to modify sites, it is firstly underlined its deterioration, litter and the presence of low-income populations (passer-bys, street vendors or residents), generally stigmatized as ""potential suspects"", emphasizing danger and lack of security in those places. This belief, which has become consensual, results in that: public as well as private companies promote the rehabilitation of the areas basing their reasoning in the necessity of adding value to the existing urban heritage, although, as it will be discussed in this paper, part of this heritage might be destroyed in this very process, under the allegation that upon completion, the action would allow the social, cultural and economical revaluation/requalification of the area. This paper is intended to provide a contribution to this discussion.
Resumo:
Much of social science literature about South African cities fails to represent its complex spectrum of sexual practices and associated identities. The unintended effects of such representations are that a compulsory heterosexuality is naturalised in, and reiterative with, dominant constructions of blackness in townships. In this paper, we argue that the assertion of discreet lesbian and gay identities in black townships of a South African city such as Cape Town is influenced by the historical racial and socio-economic divides that have marked urban landscape. In their efforts to recoup a positive sense of gendered personhood, residents have constructed a moral economy anchored in reproductive heterosexuality. We draw upon ethnographic data to show how sexual minorities live their lives vicariously in spaces they have prised open within the extant sex/gender binary. They are able to assert the identities of moffie and man-vrou (mannish woman) without threatening the dominant ideology of heterosexuality.
Resumo:
In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 +/- 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period.
Resumo:
We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M(p) = 3.47 +/- 0.38 M(Jup), a radius R(p) = 1.31 +/- 0.18 R(Jup), and a density rho(p) = 2.2 +/- 0.8 g cm(-3). It orbits a G9V star with a mass M(*) = 0.95 +/- 0.15 M(circle dot), a radius R(*) = 1.00 +/- 0.13 R(circle dot), and a rotation period P(rot) = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the RossiterMcLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 degrees +/- 20 degrees +/- (sky-projected value lambda = -10 degrees +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.
Transiting exoplanets from the CoRoT space mission XV. CoRoT-15b: a brown-dwarf transiting companion
Resumo:
We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12(-0.15)(+0.30) R(Jup) and a mass of 63.3 +/- 4.1 M(Jup), and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).