4 resultados para CSD

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the potential of the CERN Large Hadron Collider running at 7 TeV to search for deviations from the Standard Model predictions for the triple gauge boson coupling ZW(+)W(-) assuming an integrated luminosity of 1 fb(-1). We show that the study of W(+)W(-) and W(+/-)Z productions, followed by the leptonic decay of the weak gauge bosons can improve the present sensitivity on the anomalous couplings Delta g(1)(Z), Delta kappa(Z), lambda(Z), g(4)(Z), and (lambda) over bar (Z) at the 2 sigma level. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected rootstock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Downregulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.