160 resultados para CROSS-VALIDATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.
Resumo:
Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.
Resumo:
The DSSAT/CANEGRO model was parameterized and its predictions evaluated using data from five sugarcane (Sacchetrum spp.) experiments conducted in southern Brazil. The data used are from two of the most important Brazilian cultivars. Some parameters whose values were either directly measured or considered to be well known were not adjusted. Ten of the 20 parameters were optimized using a Generalized Likelihood Uncertainty Estimation (GLUE) algorithm using the leave-one-out cross-validation technique. Model predictions were evaluated using measured data of leaf area index (LA!), stalk and aerial dry mass, sucrose content, and soil water content, using bias, root mean squared error (RMSE), modeling efficiency (Eff), correlation coefficient, and agreement index. The Decision Support System for Agrotechnology Transfer (DSSAT)/CANEGRO model simulated the sugarcane crop in southern Brazil well, using the parameterization reported here. The soil water content predictions were better for rainfed (mean RMSE = 0.122mm) than for irrigated treatment (mean RMSE = 0.214mm). Predictions were best for aerial dry mass (Eff = 0.850), followed by stalk dry mass (Eff = 0.765) and then sucrose mass (Eff = 0.170). Number of green leaves showed the worst fit (Eff = -2.300). The cross-validation technique permits using multiple datasets that would have limited use if used independently because of the heterogeneity of measures and measurement strategies.
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P<0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P<0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells. (C) 2008 Wiley-Liss, Inc.
Resumo:
The aim of this study was to translate, validate and verify the reliability of the Body Area Scale (BAS). Participants were 386 teenagers, enrolled in a private school. Translation into Portuguese was conducted. The instrument was evaluated for internal consistency and construct validation analysis. Reproducibility was evaluated using the Wilcoxon test and the coefficient of interclass correlation. The BAS demonstrated good values for internal consistency (0.90 and 0.88) and was able to discriminate boys and girls according to nutritional state (p = 0.020 and p = 0.026, respectively). BAS scores correlated with adolescents' BMI (r = 0.14, p = 0.055; r = 0.23, p = 0.001) and WC (r =0.13, p = 0.083; r = 0.22, 0.002). Reliability was confirmed by the coefficient of inter-class correlation (0.35, p < 0.001; 0.60, p < 0.001) for boys and girls, respectively. The instrument performed well in terms of understanding and time of completion. BAS was successfully translated into Portuguese and presented good validity when applied to adolescents.
Resumo:
Background:The Nasal Obstruction Symptom Evaluation (NOSE) instrument is a disease-specific questionnaire for assessing the outcome of an intervention in nasal obstruction in trials. This instrument is only available in the English language and cross-culturally valid questionnaires are very important for all research, including nasal obstruction. The aim of the current study was to reproduce the cross-cultural adaptation process for the NOSE questionnaire in the Portuguese language (NOSE-p). Methodology: Cross-cultural adaptation and validation of the instrument were divided into two stages. Stage I involved four bilingual professionals, an expert committee and the author of the original instrument. In Stage 2, the NOSE-p was tested on 33 patients undergoing septoplasty for internal consistency, test-retest reliability, construct validity. discriminant validity, criterion validity, and response sensitivity. Results: The cross-cultural adaptation process was completed and the NOSE-p was demonstrated to be a valid instrument with satisfactory construct validity. It showed an adequate internal consistency reliability and adequate test-retest reliability. It could discriminate between patients with and without nasal obstruction and it has a high response sensitivity to change. Conclusions: The cross-cultural adaptation and validation process demonstrated to be valid and the NOSE-p proved to be applicable in Brazil.
Cross-cultural adaptation and validation of a Brazilian Portuguese version of the chronic pain grade
Resumo:
To verify the reliability and validity of a Brazilian Portuguese version of the chronic pain grade (CPG-Br). Cultural adaptation was made in accordance with established guidelines, with modifications aiming at improving this process. Adaptations were made based on interviews with 45 chronic pain patients from So Paulo city. Validation was studied by concurrent application of the short-form-36 health survey (SF-36) and other questionnaires to 283 participants with chronic pain from the general population. Temporal stability was verified by a second application to 131 individuals. Factor analysis resulted in a two-factor solution with factors named characteristic pain intensity and activity limitation due to pain. Alpha coefficients of 0.78 and 0.70 and intraclass correlation coefficients of 0.76 and 0.72 for each factor indicated good internal consistency and temporal stability. Significant correlations between CPG-Br and SF-36, Roland-Morris disability questionnaire and neck disability index scores were noted. A consistent linear trend was also observed between pain grades and SF-36 scores. Frequency of use of pain medications and of pain-related medical visits increased with pain grade. This Brazilian Portuguese version of the chronic pain grade, tested on a sample of the Brazilian population, demonstrated good reliability and validity.
Resumo:
Background: The perception of improvement by a patient has assumed a central role in functional evaluation after a variety of knee problems. One of the instruments most used in clinical research is the International Knee Documentation Committee (IKDC) Subjective Knee Form because its psychometric properties are considered to be excellent. Nonetheless, this questionnaire was originally developed for use in the English language. Therefore, to use this questionnaire in the Brazilian population, it is essential to translate and validate it. Purpose: The aim of this study was to translate the IKDC Subjective Knee Form into a Brazilian version and to test its validity and reproducibility. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: The translation of the original IKDC Subjective Knee Form into a Brazilian version was accomplished in accordance with the American Orthopaedic Society for Sports Medicine guidelines and was tested in 32 patients with knee pathologic conditions to develop the first Brazilian version. To test validity and reproducibility, 117 patients with several knee complaints completed the Brazilian IKDC Subjective Knee Form, the Short Form 36 (SF-36), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lysholm score. From these patients, 85 were retested within a week to achieve reproducibility. The validation was addressed by correlating the Brazilian IKDC Subjective Knee Form to the other outcome measures. The reproducibility was tested by measuring internal consistency, test-retest reliability, and agreement. Results: The Brazilian IKDC Subjective Knee Form was highly related to the physical component summary of the SF-36, the Lysholm score, and the WOMAC, and weakly related to the mental component summary of SF-36 (r=.79, .89, .85, and .51, respectively). The internal consistency was strong, with a Cronbach a value of .928 and .935 in the test and retest assessment, respectively. The test-retest reliability proved to be excellent, with a high value of the intraclass correlation coefficient (.988), as well as the agreement, demonstrated by the low differences between the means of the test and retest, and the short limit of agreement, observed in the Altman-Bland and survival-agreement plots. Conclusion: The results of this study provide evidence that the Brazilian IKDC Subjective Knee Form has psychometric properties similar to the original version. In addition, it was a reliable evaluation instrument for patients with knee-related problems.
Resumo:
Background: The assessment of activities of daily living (ADL) is important both for the diagnosis and staging of dementia. The objective of this study was to verify the applicability and validity of the Brazilian version of the Disability Assessment for Dementia (DAD-Br). Methods: The DAD was applied to caregivers of 89 patients with probable Alzheimer disease (AD) and to 40 elderly individuals without cognitive impairment (controls). We assessed the construct validity of the scale and its diagnostic accuracy (sensitivity, specificity, and predictive value). In addition, intergroup and intragroup analyses were conducted to characterize patient performance on basic and instrumental ADL and to determine underlying deficits (initiation, planning, or effective execution). Results: AD patients and controls had mean ages of 76.4 +/- 6.9 years and 74.5 +/- 7.3 years (P = 0.08), respectively. Mean Mini-Mental State Examination scores were 17.4 +/- 5.0 and 26.1 +/- 5.1 (P < 0.001) and scores on the DAD were 68.4 +/- 19.0 and 99.8 +/- 0.9 (P < 0.001), for patients and controls, respectively. The DAD scale showed good internal consistency (Cronbach alpha = 0.77) and correlation with the Mini-Mental State Examination (r = 0.44; P < 0.001). The AD group did better on basic ADL than on instrumental ADL (P < 0.001). As expected, controls did not exhibit significant deficits on the items evaluated. Conclusion: The Brazilian version of the DAD is an adequate and reliable tool for assessing functional ability in AD patients.
Resumo:
Background The aim of this study was to validate a biomagnetic method (alternate current biosusceptometry, ACB) for monitoring gastric wall contractions in rats. Methods In vitro data were obtained to establish the relationship between ACB and the strain-gauge (SG) signal amplitude. In vivo experiments were performed in pentobarbital-anesthetized rats with SG and magnetic markers previously implanted under the gastric serosa or after ingestion of magnetic material. Gastric motility was quantified from the tracing amplitudes and frequency profiles obtained by Fast Fourier Transform. Key Results The correlation between in vitro signal amplitudes was strong (R = 0.989). The temporal cross-correlation coefficient between the ACB and SG signal amplitude was higher (P < 0.0001) in the postprandial (88.3 +/- 9.1 V) than in the fasting state (31.0 +/- 16.9 V). Irregular signal profiles, low contraction amplitudes, and smaller signal-to-noise ratios explained the poor correlation between techniques for fasting-state recordings. When a magnetic material was ingested, there was also strong correlation in the frequency and signal amplitude and a small phase-difference between the techniques. The contraction frequencies using ACB were 0.068 +/- 0.007 Hz (postprandial) and 0.058 +/- 0.007 Hz (fasting) (P < 0.002) and those using SG were 0.066 +/- 0.006 Hz (postprandial) and 0.059 +/- 0.008 Hz (fasting) (P < 0.005). Conclusions & Inferences In summary, ACB is reliable for monitoring gastric wall contractions using both implanted and ingested magnetic materials, and may serve as an accurate and sensitive technique for gastrointestinal motility studies.
Resumo:
Quality of life (QOL) has been extensively studied in clinical trials and in research on chronic degenerative diseases and dementia. The aim of this study was to assess the reliability and construct validity of the Brazilian version of the QOL scale in Alzheimer`s disease (AD; QOL-AD). The QOL-AD was administered to 60 patients with mild or moderate AD and to their caregivers. The construct validation was accomplished through correlations amongst total scores of patients` and caregivers` reports on patients` quality of life (PQOL and C-PQOL, respectively), and data related to cognitive impairment, depressive symptoms, functional performance, behavioral disturbances and a generic instrument of quality of life (WHOQOL-brief), as well as correlation of total score of caregivers` reports on their own quality of life (CQOL) with the measurements cited above, QOL-AD patient reports, and depressive symptoms. The reliability was high for PQOL, C-PQOL, and CQOL versions (Cronbach`s alpha = 0.80, 0.83, and 0.86, respectively). We observed significant correlations in the construct validity of all three versions regarding the variables associated with the disease and also with WHOQOL-brief. The scale took, on average, six min for each version. The results indicate reliability and construct validity of the Brazilian version of the QOL-AD in the studied sample.